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Role of animal models in biomedical 
research: a review
P. Mukherjee1†, S. Roy1†, D. Ghosh2 and S. K. Nandi2*   

Abstract 

The animal model deals with the species other than the human, as it can imitate the disease progression, its’ diagnosis 
as well as a treatment similar to human. Discovery of a drug and/or component, equipment, their toxicological stud-
ies, dose, side effects are in vivo studied for future use in humans considering its’ ethical issues. Here lies the impor-
tance of the animal model for its enormous use in biomedical research. Animal models have many facets that mimic 
various disease conditions in humans like systemic autoimmune diseases, rheumatoid arthritis, epilepsy, Alzheimer’s 
disease, cardiovascular diseases, Atherosclerosis, diabetes, etc., and many more. Besides, the model has tremendous 
importance in drug development, development of medical devices, tissue engineering, wound healing, and bone 
and cartilage regeneration studies, as a model in vascular surgeries as well as the model for vertebral disc regenera-
tion surgery. Though, all the models have some advantages as well as challenges, but, present review has emphasized 
the importance of various small and large animal models in pharmaceutical drug development, transgenic animal 
models, models for medical device developments, studies for various human diseases, bone and cartilage regen-
eration model, diabetic and burn wound model as well as surgical models like vascular surgeries and surgeries for 
intervertebral disc degeneration considering all the ethical issues of that specific animal model. Despite, the process 
of using the animal model has facilitated researchers to carry out the researches that would have been impossible to 
accomplish in human considering the ethical prohibitions.
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Background
The animals used in various studies and investigations 
are related to the evolution of human history. Though 
there are many shreds of evidence that Aristotle in 
ancient Greece successfully used animals in understand-
ing the human body, the main breakthrough in animal 
models happened in the eighteenth and nineteenth cen-
turies with the scientists like Jean Baptiste Van Helmont, 
Francesco Redi, John Needham, Lazzaro Spallanzani, 
Lavoisier and Pasteur who studied the origin of life using 

animal models [1]. At the same time, human physiol-
ogy, anatomy, pathology as well as pharmacology were 
also studied using animal models. With the remarkable 
advancements in drug development, biomedicine and 
pre-clinical trials, the importance of animal models has 
increased many folds in the last decades, as the therapeu-
tic outcome and drug safety are the foremost important 
criteria for a drug and medical device considered to be 
used in the human model [2]. The scientific apply of ani-
mal models in the arena of biological research and drug 
development is an age-old practice because of the notable 
resemblance in physiology and anatomy between humans 
and animals, especially mammals [3]. One must consider 
that the physiological processes of humans, as well as 
mammals, are complex in terms of circulatory factors, 
hormones, cellular structures, and tissue systems. Hence, 
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investigation of various aspects such as molecular struc-
tures, cellular and organ functions in physiological and 
pathological conditions must be taken into consideration.

The process of selection of an animal model for bio-
medical research is a very intricate part, as all models 
are not acceptable due to various limitations. Many fac-
tors should be taken into consideration during the selec-
tion of an ideal animal model for biomedical trials. The 
most important criteria are the proper selection of mod-
els in terms of resemblance between animal species and 
humans in terms of physiological and/or pathophysiolog-
ical aspects. Detailed evaluation during the application 
of certain drugs/molecules/devices and their capacity to 
reproduce the disease or pathology at the same level as 
that of humans. Availability and the size of animal spe-
cies under consideration. Long life duration of the ani-
mal species under study. A Large animal population in a 
model facilitates the availability of multiple sub-species.

Many animal species such as  Drosoph-
ila  (insects), Danio rerio, or zebrafish (fish), Caenorhab-
ditis elegans (nematodes), Xenopus (frogs), and mammals 
such as mice, rabbits, rats, cats, dogs, pigs, and monkeys 
have been accepted worldwide for their phylogenetic 
resemblance to humans [4].

Choice of an appropriate animal model is most of the 
time a tedious job and sometimes depends on assump-
tions and convenience of the study and researchers with-
out considering whether the model will be appropriate 
or not. Irrational selection of an inappropriate animal 
model for scientific investigations will yield incorrect 
findings, as well as fetch misusage of resources and lives. 
Moreover, it results in erroneous, duplicative, and inap-
propriate experiments [5]. To minimize these problems, 
recently researchers have advanced their researches 
to produce animal models that are very specific to the 
research under consideration. They produced custom-
made transgenic animal models by incorporating genetic 
information directly into the embryo either by injecting 
foreign DNA or through retroviral vectors [6]. Through 
the incorporation of human cells into the recipient ani-
mals, researchers can study the effects of pathogens simi-
lar to the way in the human body [7]. Proper selection of 
animal models is mainly related to the nature of the drug 
or medical devices under study. In many instances, a sin-
gle animal model is not able to signify a human disease 
alone, in that case, the combination of several models can 
potentially signify the procedure [8].

Main text
The significance and challenges of animals in biomedical 
research
There has always been a debate among the research-
ers about the significance of animal models, as many 

experiments yield promising results, whereas, others 
couldn’t produce desired outcomes, so, that model could 
be translated to humans too. Owing to their close phy-
logenetic closeness to humans, non-human primates are 
proved to be the most potential candidate. They have 
genetic, biochemical, and psychological activities similar 
to humans. In this context, the necessity of non-human 
primates continues to grow in several areas of research 
of human diseases viz. AIDS, Parkinson’s disease, hepa-
titis, dentistry, orthopaedic surgical techniques, cardio-
vascular surgeries, psychological disorders, toxicological 
studies, drug development, toxicological studies as well 
as vaccine development [4]. The discovery of vaccines 
and diagnostic modalities with the animal model does 
not only benefit humans but also enhances the lifespan 
of animals and prevents many zoonotic diseases, with the 
production of many vaccines and drugs like rabies, teta-
nus, parvo virus, feline leukemia, etc (Table 1).

Ethical matters on the use of animals
Animal research adheres to a few dimensions like gov-
ernment legislation, public opinion, moral stand, and 
search for appropriate alternatives for the research. 
Mahatma Gandhi opined that to judge the greatness and 
moral progress of a nation, one should judge the way 
its animals are being treated. Government legislation 
restricts the researchers and institutes from likely injury, 
pain, or suffering that may arise during animal research 
[33]. On the contrary, many modern countries ruled that 
before human administration, vaccine testing, lethal dose 
testing should be done on animals [34]. Social accept-
ance has also an influential role in animal experiments as 
it utilizes public money [33]. In their moral view, many 
people think that dog has more moral impact than pig, 
rat, fishes, mouse, etc.

Ethical issues on animal experimentation started in 
1959, where the emphasis has been given on principles 
of 3Rs, reduction, refinement, and replacement of animal 
use [35]. According to this principle, minimum necessary 
numbers of animals are to be used for scientific experi-
ments i.e. reduction. Pain or distress of the animals dur-
ing experiments has to be minimized, i.e. refinement. 
Wherever applicable replacements of the animals are to 
be done with other non-animal alternatives, i.e. replace-
ment. Though these principles are considered as the 
cornerstone of animal experimentations, but there are 
questions regarding the implementation of these regula-
tions [36].

Laboratory (small) and large animal models for human 
diseases
The importance of rat and mouse models has proved 
their outstanding importance in biomedical research. 
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Besides, other mammalian and non-mammalian small 
domestic animals like the guinea pig, hamster, rabbit, fer-
rets, birds, amphibians, fishes, flies, worms have equal 
importance in terms of anatomical and physiological 
resemblance with humans. Large animal models also 
proved their uniqueness due to specific anatomical and 
physiological characteristics pertinent to those specific 
researches (Table 2).

Transgenic animal models in biomedical research
The gene rule and role in the biological system of human 
diseases has improved many folds with the introduction 
of the transgenic animal model in biomedical research 
within the last three decades. The early example of most 
unique biological research started, when structural gene 
coding for the human growth hormone (GH) was initi-
ated into mice after fusion with the regulatory region 
of mouse metallothionein-I gene, as a result, transgenic 
mouse produced and showed excess GH production 
[157].

Linking of the genotype with disease phenotype has 
been expedited with the genome editing with the intro-
duction of the CRISPR–Cas9 system by which disease-
causing mutations are done in animal models [158]. 
Moreover, the production of transgenic animals has been 
radically changed by the introduction of the CRISPR–
Cas9 system. Through the successful use of this model 
accurate human disease models in animals have been 
produced and possible therapies have been potenti-
ated. Recapitulation of various disease-causing single 
nucleotide polymorphisms (SNPs) in animal models is 
achieved by the introduction of gRNA with the combina-
tion of Cas9 and donor template DNA [159], viz. mouse 
model has enormous importance in carrying human 
genetic traits, developmental similarities as well as dis-
ease translation [158, 160–162]. Zhang and Sharp labs at 
MIT/Broad Institute used CRISPR–Cas9 through AAV 
and lentivirus [163] both in vivo and ex vivo in neurons 
as well as endothelial cells of mice for the production 
of lung cancer model in mice where lung causing genes 
namely Kras, Tp53, and Lkb1 were mutated. On the other 

Table 1 Significance and challenges of different animal models

Disease model/procedure Animal model References

Significance Challenges

Ischemia and reperfusion injury of the spinal 
cord

Animal models are warranted But, need several models are required (Pig, 
rabbit, mouse)

[9]

Cartilage defect repair with biomaterials There are murine, ovine, leporine, caprine, 
porcine, canine, and equine models

In regards to cartilage thickness, joint 
biomechanics and ethical and licensing 
matters, caprine models are the best suited

[10]

Monoclonal antibodies for cancer treatment Preclinical trials of monoclonal antibod-
ies (mAbs) in animal models are required to 
reach the clinic

But, mAbs are less adapted to animal studies [11]

Animal models to study of limb restoration Cockroach: similar resemblance within 
the animal kingdom, cheap, least ethical 
regulations

Not ideal for the less resemblance with 
human

[12]

Zebrafish: genome is well identified, ver-
tebrate; grow very fast, high regenerative 
capacity, least ethical regulations

Not ideal for the less resemblance with 
human

[13, 14]

Mouse: cheap, fast growth, well established 
genome, many species and transgenic 
strains, mammalian

Findings not trustworthy for human trials [15–17]

Rat: larger than mice, cheap, fast growth, 
well established genome, many species and 
transgenic strains, mammalian

Findings not trustworthy for human trials as 
well as maintenance cost is more than mice

[18–21]

Dog: large in size, higher physical activity, 
cheaper than horse, mammalian, good for 
preclinical trial, results are trustworthy for 
human trials

More ethical constraints, more maturity 
period than rodents, expensive rearing cost

[22–26]

Horse: larger mammal than dog, higher 
physical activity, trial result can easily be 
transferred to human

More ethical constraints, more maturity 
period, expensive rearing cost

[27–30]

Development of antibacterials Efficacy and toxicity of antibacterials can be 
studied

But, animal model can’t predict human 
response to that component

[31]

Streptozotocin (STZ)—induced diabetes 
model

STZ produces clinical features in animals 
that resemble diabetes in humans

But, physiochemical properties and toxici-
ties of STZ cause mortality to the animals

[32]



Page 4 of 17Mukherjee et al. Laboratory Animal Research           (2022) 38:18 

hand, an MIT-Harvard team [164] disrupted the tumor 
suppressor genes Pten and Tp53, and consequently liver 
cancer was produced in mice.

Animal models in pharmaceutical drug development
In recent advancements, animal models are the most 
practical tools for pre-clinical drug screening before 
application into clinical trials. Animal models are con-
sidered as most important  in vivo  models in terms of 
basic pharmacokinetic parameters like drug efficiency, 
safety, toxicological studies, as these pre-clinical data 
are required before translating into humans. Toxicologi-
cal tests are performed on a large number of animals like 
general toxicity, mutagenicity, carcinogenicity, and tera-
togenicity and to evaluate whether the drugs are irritant 
to eyes and skin. In most instances, both in vitro and in 
vivo models are corroborated before proceeding to medi-
cal trials.  In vivo models are mostly conducted in mice, 
rats, and rabbits [2]. Certain stages are involved in pre-
clinical trials with animal models: firstly, if the trial drug 
shows desirable efficacy then only further studies are car-
ried out; secondly, if a drug in pre-clinical trials on ani-
mals proved to be safe, then it is administered in small 
human volunteer groups, at the same time, the animal 
trial will go on to evaluate the effect of the drug when 
administered for an extended period [8, 165]. Mostly, 
rodents are used for these trials as they have similar 

biological properties to humans and are easy to handle 
and rear in laboratories. In new regulations, it is manda-
tory to carry on the trials on non-rodents such as rab-
bits, dogs, cats, or primates simultaneously with rodents 
[166].

Animal models in orthopedic research
There are many conditions involving bone pathologies 
such as osteomyelitis, osteosarcoma, osteoporosis, etc. 
Being a complex organ, the treatment of bone needs spe-
cial care and extensive researches that involves special-
ized techniques as well as specific animal models for the 
studies of specific diseases. Herein, the animal models 
emphasize mostly related to fracture healing (critical size 
defect), osteoporosis, osteomyelitis, and osteosarcoma 
(Table 3).

Animal models in diabetic and burn wound healing
Type 2 diabetes and associated foot ulcer have turned 
into an epidemic worldwide in recent years causing 
severe socio-economic trouble to the patients as well 
as the health care system of the nation as a whole [208]. 
Various researches depicted that chance of developing 
an ulcer in diabetic patients varies between 15–25% 
[209, 210] and the chance of recurrence is about 
20–58% among the patients within a year after recov-
ery [211]. Hence, many researchers studied different 

Table 2 Biomedical significances and limitations of small animal models

Small animal models Significances and limitations References

Rats (Rattus norvegicus domes-
tica) and Mice (Mus musculus) 
model

Easy breeding, handling, less rearing care, easily interchangeable between rats and mice. They are mostly 
inbred, so do not have genetic variations like a human, not a suitable model for inflammation study

[37–42]

Guinea pig (Cavia porcellus) Mostly outbred, suitable for cholesterol metabolism, asthma model, feto-placental development and 
parturition, Alzheimer’s disease study, tuberculosis research, vaccine study. High phenotypic variations, 
Ebola research in guinea pig is limited due to the poor infectious potential of the virus

[43–63]

Hamster, especially golden 
hamster (Mesocricetus auretus)

Excellent for reproductive research due to the strict progesterone, but not oestrogen, short gestation 
period, unique an anatomical feature like loose subcutaneous space, important for micro-circulation 
studies, cancer model, infection model for leptospirosis, vaccine studies

[64–81]

Rabbit (Oryctolagus cuniculus) Good model for surgically created osteoarthritis, wound healing model, drug study, asthma model, cho-
lesterol model, cardiovascular disease model, Alzheimer’s disease model

[82–97]

Equids (Equus) Important for the study of articular defects, orthopaedic models, tendinopathies, asthma model, repro-
ductive models. But, more care expenses are required

[98–102]

Cattle (Bos taurus) Important for study of female reproductive model, pregnancy related issues, tuberculosis models. But, 
more care expenses are required

[103–107]

Goat (Capra hircus) Potential for orthopaedic studies, mechanical circulatory support devices, model for female to male XX 
sex reversal

[108–116]

Sheep (Ovis aries) Easy to handle, easy sampling, physiological and anatomical nature are similar to humans, good for 
surgical model for bone and wound healing, asthma model, heart pathology, vaccine development, but, 
mostly inbred strains

[117–129]

Cat (Felis catus) Important models for asthma, obesity, type-2 diabetes mellitus, HIV, cerebral palsy [130–140]

Dog (Canis familiaris) Narcolepsy, hemophilia B, or hereditary diseases, cancer, musculoskeletal research, etc [141–150]

Pig (Sus scrofa) Large litter size, more similar with human physiology, important for cardiovascular study, Alzheimer’s 
disease, Atherosclerosis, Type 2 diabetes mellitus, Breast cancer, etc

[151–156]
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materials or drugs to treat diabetic wounds. Similarly, 
burn wounds occur due to exposure to flames, hot sur-
faces, liquids, chemicals, or even cold exposure [212]. 
Though with the recent modalities like skin grafting 
prognosis has improved however, the mortality rate is 
high [213–215].

Diabetic wound rat model
For developing this model, clinically healthy male 
Wistar rats (150 ~ 250  g body weight) are used. To 
induce hyperglycemia, injection nicotinamide (NAD)@ 
150  mg/kg BW intraperitoneally, after 15  min injec-
tion Streptozotocin (STZ) @ 65  mg/kg BW intraperi-
toneally [216] are to be injected. The same procedure 
has to be repeated after 24 h. Blood is to be collected 
from the tail after 72  h to check hyperglycemia. Rats 
having high blood glucose levels (≥ 10  mmol/L) are 
considered to be diabetic [217]. For wound creation, 
rats are to be anesthetized with a combination of xyla-
zine @10  mg/kg (intramuscular injection) and keta-
mine @90 mg/kg (intramuscular injection) [218]. After 
marking the dorsal back area with methylene blue, the 
site is to be prepared aseptically after shaving [219]. 
Full-thickness wound creation is to be done with a 
sterile 6 mm biopsy punch measuring 6 mm diameter 
and 2 mm depth and left open [218] (Fig. 1c).

Burn wound models
Because of the severity and types of cause, the manage-
ment of burn injuries poses a significant challenge to 
plastic surgeons in humans. In general, primary and sec-
ondary burn wounds heal by the primary healing process, 
but, third-degree burn injuries with the destruction of all 
the skin layers are resistant to the normal healing pro-
cess and necessitate the added surgical procedures, such 
as skin grafting, and the relevance of advanced wound 
dressing [220]. Several researchers used the albino 
Winstar male rats (Rattus norvegicus) model weighing 
250 ± 50 g for the study of burn wounds. Anesthesia was 
achieved with intramuscular administration of atropine 
sulfate (0.04  mg/kg BW) and after 10  min a combina-
tion of 10% ketamine (90 mg/kg) and 2% xylazine (10 mg/
kg) intramuscularly produced adequate anesthesia [221]. 
After aseptic preparation of the dorsal back area, thermal 
injury has to be made with a 10 mm aluminium rod pre-
viously heated with 100 °C boiling water. The aluminium 
rod has to be kept in situ for 15 s. Immediately after the 
procedure analgesic is to be provided and to be contin-
ued for at least 3  days [222–224]. A hot air blower has 
been used to produce a 6% third-degree burn injury in 
a mouse model [225]. In pig, a partial-thickness burn 
model in the skin was produced by placing a glass bot-
tle having heated water at 92  °C for 14  s [226] In other 
studies, a homemade heating device was placed over the 

Fig. 1 a. Bone defect model and implantation of implant b. Vascular graft mode c. Diabetic wound model d. Osteomyelitis model development e. 
Creation of burn wound model f. Cartilage graft model—All in rabbit
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skin for 35  s to create burn wound [227]. In rabbits, it 
was demonstrated to use a dry-heated brass rod for 10 
and 20 s at 90 °C to create a deep partial-thickness burn 
wound in the ear [228]. In mice, a full-thickness burn was 
created under 3–5% isoflurane anesthesia and intraperi-
toneal caprofen 5 mg/kg as analgesia. Here, a 4  cm2 brass 
rod attached to a temperature probe was first heated to 
260 °C and then cool to 230 °C and finally placed on the 
dorsum skin for 9 s [229] (Fig. 1e).

Animal models in cartilage repair
Animal models have enormous importance in the study 
of cartilage repair. Though in  vitro models have been 

reported, it could not replace the necessity of using ani-
mal models prior to clinical implementation [230–236] 
(Table 4).

Animal models in vascular grafting
With the increase of cardiovascular complications, there 
is a need for surgical intervention using vascular grafts. 
Vascular grafting and cardiac valve repair have become 
important issues to the clinicians for the replacement of 
damaged vessels [249, 250], hence there is an increased 
demand for tissue-engineered blood vessel substitute 
[250, 251]. The main prosthetic options are synthetic 
grafts such as polytetrafluoroethylene, polyethylene 

Table 5 In vivo animal studies of different vascular grafts

Animal species Type of graft Graft 
diameter 
(mm)

Graft patency rate In vivo study model References

Ovine EC-seeded xenogenic porcine decellularized 
carotid artery

5 Common carotid artery/external 
jugular vein arteriovenous shunt

[254]

Canine PCL + VEGF 2 100% in 4 weeks Femoral artery [255]

Canine P(LLA-CL) + Autologus, EC preendothelialization 4 88.9% in 24 weeks Femoral artery [256]

Canine P(LLA-CL) 4 75% in 3 months Femoral artery [257]

Ovine Decellularized graft derived from fibrin gel and 
ovine dermal fibroblasts

4 100% in 168 days Carotid artery [258]

Ovine Heparin and VEGF-treated xenogenic porcine 
dSIS

5 92% in 90 days Carotid artery [259]

Mouse PCL 0.5 53% in 28 days Carotid artery [260]

Rabbit P(LLA-CL) + Collagen + Elastin + VEGF 4 86% in 3 weeks Infrarenal aorta [261]

Ovine PCL electrospun + PLCL sponge 5 100% in 8 weeks Carotid artery [262]

Ovine PHBV/PCL-GF 4 50% in 1 year Carotid artery [263]

Table 6 Different animal models for the study of IVDD

Animal model Anaesthesia Procedure Significance and limitations References

Goat Ketamine (11–33 mg/kg BW) and 
midazolam (0.5–1.5 mg/kg BW), intra-
venously followed by maintenance 
with an isoflurane-oxygen combina-
tion

Following the aseptic technique, 
the lumbar intervertebral discs were 
opened via left lateral retroperitoneal, 
transpsoatic approach. A titanium 
Kirschner wire was positioned in the 
L1 or L2 vertebral body to facilitate 
marking of vertebral levels on radio-
graphs

Weight range, disc height, size, and 
shape are similar to humans. They can 
withstand the stress of anaesthesia 
and surgery well. But, goat torse has 
a different anatomical structure in 
comparison to a human

[268–272]

Rabbit Intramuscular injection of Xylazine 
hydrochloride (5 mg/kg BW) and keta-
mine hydrochloride (50 mg/kg BW)

After positioning the rabbit in lateral 
decubitus position a 20 degrees 
inclination was produced. IVD was 
exposed with a posterolateral retro-
peritoneal approach. After dissecting 
the skin, subcutaneous tissue, and 
muscle, the left anterolateral aspect 
of L1–L5 was exposed. Then, one IVD 
is punctured between L1–L5 with 
the help of a 16-gauge needle to a 
depth of 5 mm in the left anterolateral 
annulus fibrosus in the annular stab 
method

Similar to human disc degeneration in 
biochemical and histological aspects. 
But, the method causes rapid narrow-
ing of the disc space and disc height 
as well as rapid herniation of nucleus 
pulposus

[273–280]
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terephthalate, and polyurethane [252], and autologous 
conduits. Although these types of synthetic grafts pro-
vide reasonable outcomes in large-diameter vascular 
applications, long-term patency is questionable as com-
pared to autologous conduits in small-diameter (< 6 mm) 
applications due to their inclination to various compli-
cations [253]. Despite the superior outcome of autolo-
gous grafts, it has some disadvantages such as limited 
availability and prior use. Moreover, the determination 
of a suitable animal model needs considerations of vari-
ous factors. The factors for the selection of animal spe-
cies depend on diameter and length of conduits, period 
of implantation, anastomotic site, price, accessibility, 
reaction to anesthesia and surgery, and flow of blood at 
sites of graft implantation. Animal applications of these 
tissue-engineered vessels are, therefore, an utmost neces-
sity as pre-clinical studies before use in humans (Fig. 1b, 
Table 5).

Animal models in disc degeneration
Intervertebral disc degeneration (IVDD) and herniation 
manifested as lower back pain cause a massive socio-
economic burden to the patient and society as a whole 
[264–267]. But there is a lack of treatment modalities to 
cure mildly to moderate degeneration as well as com-
plications associated with surgical interventions asso-
ciated with the advanced stage; hence, researchers are 
enormously trying to reinforce regenerative strategies 
and to lower the suffering by controlling the pain with 
the injection of stem cells, growth factors hydrogels for 
replacement of the disc [268]. Diverse animal models 
have been reported as a pre-clinical trial to translate 
the procedure in humans (Table 6).

Conclusions
The importance of animal models is unquestionable in 
terms of  in vivo  study for the implementation of any 
biomedical research to humans. It serves not only the 
human race but also well being of veterinary patients. 
Animal models have not only important roles in drug 
development, toxicity studies, pharmacokinetic stud-
ies of a drug, but also the pre-clinical study of medical 
and tissue engineering devices that are intended to be 
used in humans. Laboratory animal models are more 
cost-effective and agreeable to high throughput test-
ing as compared to large animal models. Yet, to obtain 
preclinical data and to ascertain the clinical potential 
of vascular graft as well as orthopedic bone plates and 
implants, large animal models that mimic human anat-
omy and physiology are to be developed. Whatever may 
be the modes of using animal models for biomedical 

researches, it should abide by the principles of 3Rs, i.e., 
reduction, refinement, and replacement of animals.
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