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Abstract 

Background:  Now that it is possible to efficiently classify and save tissue images of laboratory animals using whole-
slide imaging, many diagnostic models are being developed through transfer learning with Convolutional Neural 
Network (CNN). In this study, transfer learning was performed to gain toxicopathological knowledge using CNN 
models such as InceptionV3 and Xception. For the classification of tubular basophilia and mineralization, two repre-
sentative background lesions that commonly occur in toxicological studies, accuracies of diagnosis were compared 
using MobileNetV2, Xception and InceptionV3. For the simultaneous detection of the two lesions, the accuracy was 
analysed using You Only Look Once version 4 (YOLOv4).

Results:  The accuracy of the classification models was as follows: MobileNetV2 (epoch 50, accuracy: 98.57%) > Xcep-
tion (epoch 70, accuracy: 97.47%) > InceptionV3 (epoch 70, accuracy: 89.62%). In the case of object detection, the 
accuracy of YOLOv4 was 98.62% at epoch 3000.

Conclusions:  Among the classification models, MobileNetV2 had the best accuracy despite applying a lower epoch 
than InceptionV3 and Xception. The object detection model, YOLOv4, accurately and simultaneously diagnosed tubu-
lar basophilia and mineralization, with an accuracy of 98.62% at epoch 3000.
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Background
Artificial intelligence (AI) is a field of computer science 
that is defined as enabling computers to mimic human 
intellectual behaviour. AI is being applied to various fields 
in the twenty-first century owing to its high accuracy and 
very fast task processing through massive data learning 
[1]. Medical and pathological image analysis technology 
using AI is positioned to lead the development of the 
field of AI-based imaging [2]. In particular, imaging area 

of AI is also currently being actively applied and studied 
in the field of toxicopathology.

In this field, the term “classification” refers to classifica-
tion of an object in an image as an input. For example, 
when an image of renal mineralization is presented as an 
input, it is classified as “This photo is an image showing 
mineralization”. In this example, mineralization classified 
by the computer is named “label” or “class”. Representa-
tive classification models include AlexNet [3], VGG-
Net [4], Inception [5], and MobileNet [6], all of which 
have a CNN structure. Lung cancer has been classified 
with 97% accuracy using the InceptionV3 model, and 
when the CNN subtype neural network was trained on 
images from lung adenocarcinoma patients combined 
with mutation profiles, it was able to predict the presence 
of mutations in specific genes [7]. Furthermore, models 
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based on CNN, such as VGGNet, ResNet, and AlexNet, 
have been proposed and their accuracy has been tested 
[8].

The term “localization” refers to the location of an 
object in an image using a bounding box as well as a sim-
ple classification feature. “Object detection” suggests that 
classification and localization are performed simultane-
ously on multiple objects. For example, using an object 
detection model, it is possible to classify and localize dif-
ferent lesions in the rat kidney. The YOLO model is a rep-
resentative object detection model [9].

‘YOLO’ stands for ‘You only look once’ and is a method 
that improves accuracy by applying the grid cell and 
Bounding Box method, which indicate specific image, to 
overcome the shortcomings of the existing sliding win-
dow method [9, 10]. In addition, it boasts a fast detec-
tion speed and high accuracy, and is currently the most 
widely used object detection model [9, 10]. The network 
structure of the YOLO model is based on the GoogleNet 
model [11] and consists of 24 convolutional layers and 
2 fully connected layers. YOLOv4 is more accurate and 
faster than YOLOv3 owing to a 10% improvement in 
mean Average Precision (mAP) and a 12% increase in the 
number of frames per second. In addition, the YOLOv4 
model is equipped with an inherent function called 
“Mosaic augmentation”, and which is characterized by 
easy statistical calculation of batch normalization using a 
method to predict specific object by merging four images 
into one [12].

Transfer learning is used to perform additional image 
learning using previously trained CNN models (classifi-
cation models, object detection models, etc.). In general, 
the learning speed and final algorithm accuracy are bet-
ter if transfer learning is performed to learn knowledge 
in a specific field from an existing AI model rather than 
by developing a new algorithm and AI model in a specific 
field [13].

Toxicopathology is a field to morphologically evalu-
ate the efficacy and safety of test substances. It plays an 
important role in diagnosing diseases and identifying 
causes, and in providing rational grounds and directions 
for treatment development [14]. In general, toxicopathol-
ogists diagnose and evaluate lesions in tissues of labora-
tory animals on glass slides. Whole Slide Images (WSIs) 
are digitized image of classical slide glass samples using a 
virtual slide scanner. This WSI technique has established 
itself as a means to perform pathological evaluation [15], 
and is being converted to virtual microscopy based on 
WSI in the field of pathology research and education [16].

Tubular basophilia and mineralization are two com-
monly spontaneous lesions in the kidney of rodents [17]. 
Tubular basophilia is characterized by tubular epithelial 
cells with a basophilic cytoplasm; the cells are slightly 

enlarged, which is used as a diagnostic feature. It occurs 
in an early stage of chronic progressive nephropathy 
(CPN) and is observed with an increasing incidence dur-
ing rodent aging [17]. Mineralization, commonly known 
as calcification, occurs frequently at the cortex–med-
ullary junction in rodents and is characterized by the 
replacement of tubular cytoplasm with deposits due 
to tubular degeneration [18]. These lesions are major 
component of CPN, which sometimes misdiagnosed by 
senior pathologist and could develope renal tumor. The 
reason for the use of these two lesions for transfer learn-
ing is that they are very common naturally occurring 
background lesions in rodent kidneys and have distinct 
characteristics that even junior pathologists can eas-
ily diagnose, so each model can be easily trained. In this 
study, the accuracy of classification of tubular basophilia 
and mineralization was compared using the AI classifica-
tion models InceptionV3, Xception, and MobileNetV2. In 
addition, the accuracy of simultaneous detection of the 
two lesions was calculated using YOLOv4.

Results
Accuracy evaluation of classification models
The maximum accuracy was 89.62% in InceptionV3 
(Fig.  1a), 97.47% in Xception (Fig.  1b), and 98.57% 
in MobileNetV2 (Fig.  1c). Therefore, the accu-
racy of the classification models was as follows: 
MobileNetV2 > Xception > InceptionV3.

Classification of tubular basophilia and mineralization 
using MobileNetV2
MobileNetV2 was trained through image training in 50 
epochs. As a result, it was possible to classify and diag-
nose tubular basophilia (Fig.  2a) and mineralization 
(Fig. 2c). In addition, non-lesion sites were clearly diag-
nosed as normal (Fig. 2b, d).

Accuracy evaluation of object detection models
The maximum accuracy of YOLOv4 subjected to deep 
learning was 98.62% (Fig.  3). The mAP of YOLOv4 was 
0.9862. (mineralization, 0.9904; tubular basophilia, 
0.9820). YOLOv4 that deep learned in epoch 3,000 diag-
nosed tubular basophilia and mineralization (Fig.  4a, 
b). Tubular basophilia and mineralization were simul-
taneously detected when they were present in adjacent 
regions in the same image (Fig. 4c).

Discussion
This study demonstrated that, among the classification 
models for which toxicopathological knowledge trans-
fer learning was performed, MobileNetV2 had better 
accuracy than InceptionV3 and Xception. In addition, 
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transfer learning and deep learning were performed 
using YOLOv4, and the maximum accuracy in epoch 
3,000 was as 98.62%.

First, before proceeding with deep learning, the YOLO 
model (an object detection model) was trained with the 
WSI to efficiently and accurately identify mineralization 
and tubular basophilia lesion images. In classification 
models, when an image is given as an input, one value 
(result of input) is produced. The one value indicates the 
level of the highest category by outputting the probabil-
ity distribution of mineralization and tubular basophilia 
images. However, the YOLO model, object detection 
model, indicates four values of the lesion location. There-
fore, we thought that this object detection model would 
be more suitable for the detection of the exact positions 
of tubular basophilia and mineralization than a classifica-
tion model, and we finally selected the YOLO model and 
proceeded with deep learning (epoch 3,000). We selected 
YOLOv4 rather than YOLOv3 as the former but not the 
latter has an inherent function for data augmentation. 
In addition, in terms of overall accuracy, YOLOv4 is an 
upgraded model that complements YOLOv3. The num-
ber of lesion image data was increased to about 1,500 
image data using mosaic augmentation technique.

Xception had higher accuracy in epochs 70 (97.47%) 
than InceptionV3 (89.62%). Xception is a model devised 
by having perform a depthwise separable convolution 
operation based on InceptionV3. In a recent study that 
compared the accuracy of Xception and InceptionV3, 
which both performed transfer learning, Xception had 
higher accuracy than InceptionV3, although the learn-
ing time was longer in Xception than InceptionV3 in 
the same epoch [19]. On the other hand, in the case of 
MobileNetV2, the highest accuracy (98.57%) was found 
at epoch 50 lower than epoch 70 for both models (Incep-
tionV3 and Xception). Similar to Xception, MobileNetV2 
uses a depthwise separable convolution operation that 
increases the efficiency of the convolution operation; 
furthermore, it uses a linear bottleneck that can reduce 
information loss in a nonlinear activation function, and 
an inverted residual block that increases the internal 
channel. Since this model can make predictions lighter 
by using depthwise separable convolution operation, it 
is estimated that the accuracy is higher than those of the 
two models even at low epochs [6].

The maximum accuracy of YOLOv4 in epoch 3,000 
was 98.62%. Learning was performed with a higher epoch 
than that of the classification models. There are clear 
algorithmic differences (input, output, etc.) between the 
classification models and object detection models, and 
the accuracy of YOLOv4 was not calculated in epochs 
less than 1,020 (Fig. 3). In YOLOv4, The accuracy slope 
increased rapidly from epoch 1,300 or higher, and from 
epoch 1,860 or higher, a rather shallow slope with an 
accuracy of 97% or more and a low loss value (< 2.0) were 
calculated (Fig. 3).

Fig. 1  Accuracy evaluation of classification models. a InceptionV3. 
by The accuracy was 89.62% in epoch 70. b Xception. The accuracy 
was 97.47% in epoch 70. c MobileNetV2. The accuracy was 98.57% in 
epoch 50. The accuracy of each model was calculated after transfer 
learning of toxicological knowledge
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When performing transfer learning of the YOLO 
model, "underfitting" occurred as a result of train-
ing using fewer than 300 lesion images. In general, in 
an object detection model, image data ranging from a 
minimum of several thousand to a maximum of tens of 
thousands are required to detect an object with clear 
image characteristics. However, since the data given to 
the YOLO model contained unfortunately fewer than 
300 images because of a limited slide sample, "underfit-
ting" occurred because it was difficult to train the image 
features when training only with basic images (jpg. 
and basic WSI images). As a solution, YOLOv4 was 
trained by increasing a total of 288 basic images (con-
taining tubular basophilia and mineralization) to 1,436 
by performing data augmentation, an inherent func-
tion in YOLOv4. The augmented lesion data were suf-
ficient to train the YOLOv4 model. However, in order 
to develop a perfect toxicopathology diagnostic model, 
it will require to have at least several tens of thousands 
of images to learn various cells that exist in normal 

tissues and organs for each target organ. Furthermore, 
if testing is performed on slides with artefacts similar 
to tubular basophilia or mineralization (transfer learn-
ing for target lesions), it could result in misdiagnosis or 
very low accuracy. As a solution, it is necessary to learn 
a lot of slide cases in which various artefacts exist to 
clearly distinguish between normal tissues and lesions. 
From our experience of performing pathology peer 
review of Korea National Toxicology Program (KNTP) 
toxicity study project of Ministry of Food and Drug 
Safety (MFDS), when examining a pathological slide, 
at least 1,000 pieces of reading per substance should be 
inspected.

Furthermore, if deep learning is performed on lesions 
in various tissues according to diagnostic characteristics, 
an AI model can quickly pre-screen to examine slides 
containing or removed lesions targeted by the patholo-
gist. If so, toxicopathologists will be able to finally con-
firm the results of pre-screened lesions, which will 
significantly save the lesion reading time and manpower.

Fig. 2  Diagnosis by MobileNetV2. Transfer-learned MobileNetV2 diagnosed the test sample (WSI, scale bar = 200 µm, original magnification × 200). 
a Diagnosis of tubular basophilia. Tubular basophilia was accurately classified and diagnosed. b Diagnosis of normal kidney. Normal tissue but 
not the lesion site was diagnosed as normal. c Diagnosis of mineralization. Mineralization was accurately classified and diagnosed. d Diagnosis of 
normal kidney. Normal tissue but not the lesion site was diagnosed as normal
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The WSI program did not have the image segmen-
tation function and the function to save the images as 
jpg. files, so I used the Photoscape X program to divide 
it. In other words, if the compatibility between the 
virtual environment called GoogleColab and the WSI 
program is facilitated, AI diagnosis of laboratory ani-
mals will become easier.

In this paper, each model was transferred to tubu-
lar basophilia and mineralization, which can be eas-
ily diagnosed by junior pathologists and commonly 
occur spontaneous renal lesions. Furthermore, addi-
tional learning of lesions such as hyaline cast and renal 
inflammatory cell infiltration will play a major role in 
diagnosing CPN, which well-known for complicated 
spontaneous lesion of kidney and misdiagnosed by 
senior pathologist.

Conclusions
Among classification models, as a result of perform-
ing transfer learning of toxicopathological knowledge, 
MobileNetV2 had excellent accuracy despite applying a 
lower epoch than InceptionV3 and Xception. The object 
detection model YOLOv4 had an accuracy of 98.62% at 
epoch 3,000 and accurately and quickly diagnosed tubu-
lar basophilia and mineralization in the rat kidney using a 
bounding box.

Methods
Experimental environment
In this study, 288 images of kidney lesions (tubular baso-
philia and mineralization) in rats (Sprague–Dawley and 
Fischer 344 rat) used in the KNTP project of the MFDS, 
which was performed from 2018 to 2020 (13-week 

Fig. 3  Accuracy evaluation of the object detection model YOLOv4. The x-axis indicates epochs and the y-axis indicates loss range. Red text, mAP; 
blue text, the loss value. Each time the epochs (training cycles) increase, the accuracy is updated and calculated, and the loss value is calculated at 
the same time. Epochs and loss values are inversely proportional. Below 1,000 epochs, the accuracy was not calculated. This is the mechanism of the 
object detection model, which means that at least a certain number of epochs must be applied before accuracy is calculated
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repeated dose toxicity test, 3 cases; mineralization: 147 
images, tubular basophilia: 141 images, file name exten-
sion:.jpg), and 20 WSI slides with kidney lesions (file name 
extension:.czi) were used to train and validate classification 
and object detection models. Of the 288 images, 241 were 
used as training data, and 47 were used as valid data and 
test data. In addition, 10 of the 20 WSI slides were used as 
training data and 10 were used as valid data and test data. 
Google Colab Pro was used as the development environ-
ment, and Tensorflow 2.4.1, Pytorch 1.8.1, and OpenCV 
4.1.2 were used as the libraries. open source uses YOLO_
mark. Experimental procedure was as follows; 20 slides 
containing tubular basophilia and mineralization, which 
commonly occured spontaneous renal lesion in rats, were 
converted into WSI using a virtual slide scanner. After 
that, the training data were captured using the WSI read-
ing program (Zen) and images containing each lesion were 
captured as jpg. After converting to a file, transfer learning 
was performed (also carried out on the jpg. files).

Transfer learning of classification models
In the existing layer structures of InceptionV3, Xception, 
and MobileNetV2, the model was reconstructed in the 
order of the Dense (512) layer, the batch normalization 
layer, the Rectified Linear Unit (ReLU) activation func-
tion, the Dense (2) layer, and the softmax activation func-
tion. The batch size was 26, the optimizer was Adam. For 
the loss function, Categorical Cross Entropy was applied. 
After that, the model was trained after performing data 
pre-processing. Kidney lesions and normal tissues of var-
ious sizes were divided into 224 × 224 pixels per cell, and 
the images with smaller than in the 224 × 224 pixel area 
were fit into this area and supplemented with white back-
ground to adjust the size and then to adjust the size of the 
lesion. The image thus obtained was learned by classify-
ing the recognized part and the unrecognized part.

Transfer learning of the object detection model
The object detection model YOLOv4 was used, and the 
learning algorithm used to read kidney lesions proceeded 
in the following three steps: data bounding, data augmen-
tation, and hyperparameter tuning. Data bounding used 
the YOLO_mark open source to bound the lesion to the 
training image. Considering that it is difficult to predict 
when boxes overlap, the boxes were bounded so that they 
did not overlap as much as possible. Mineralization was 
coded using Red Green Blue (RGB), and had a duller or 
darker colour than the surrounding tissue. In the case of 
tubular basophilia compared to normal tubules, coding 
was based on a dull colour, enlarged nucleus, and thick-
ened basement membrane.

b) 

a) 

c) 
Fig. 4  Diagnosis by YOLOv4. a Recognition of tubular basophilia 
(arrow) in WSI (Scale bar = 200 µm, original magnification × 200). 
YOLOv4 accurately diagnosed renal WSI, to which the brightness 
control function, which is an inherent function of WSI, was applied. 
The location of tubular basophilia was detected using the bounding 
box, the output of YOLOv4. b Recognition of mineralization (arrow) in 
WSI (Scale bar = 200 µm, original magnification × 200). The location 
of mineralization was detected using the bounding box, the output 
of YOLOv4. c Simultaneous recognition of tubular basophilia (arrows) 
and mineralization (arrowheads) in WSI (Scale bar = 200 µm, original 
magnification × 100). Tubular basophilia and mineralization were 
simultaneously detected using the bounding box, the output of 
YOLOv4
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