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Abstract 

Preclinical ischemic stroke studies extensively utilize the intraluminal suture method of middle cerebral artery 
occlusion (MCAo). General anesthesia administration is an essential step for MCAo, but anesthetic agents can lead 
to adverse effects causing death and making a considerable impact on inducing cerebral ischemia. The purpose 
of this study was to comparatively assess the effect of isoflurane and xylazine on transient cerebral ischemia in a 
mouse model of MCAo. Twenty animals were randomly divided into four groups: sham group (no MCAo), control 
group (MCAo under isoflurane, no agent till reperfusion), isoflurane group (MCAo under isoflurane continued till 
reperfusion), xylazine group (MCAo under isoflurane, and administration of xylazine till reperfusion). The survival 
rate, brain infarct volume, and neurologic deficits were studied to assess the effect of isoflurane and xylazine on the 
stroke model. Our results showed that the body weight showed statistically significant change before and 24 h after 
surgery in the control and Isoflurane groups, but no difference in the Xylazine group. Also, the survival rate, brain 
infarct volume, and neurologic deficits were slightly reduced in the isoflurane group at 24 h after reperfusion injury. 
However, the xylazine and control groups showed similar BIV and neurologic deficits. Interestingly, a high survival rate 
was observed in the xylazine group. Our results indicate that the modified method of inhalation anesthetics com‑
bined with xylazine can reduce the risk of mortality and develop a reproducible MCAo model with predictable brain 
ischemia. In addition, extended isoflurane anesthesia after MCAo is associated with the risk of mortality.
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Background
Cerebral ischemia (CI) is a condition that causes acceler-
ated brain aging, motor function impairment, cognitive 
decline, and mortality. Due to the irreversible neuronal 
injury caused by ischemic stroke, extensive preclini-
cal stroke research has been conducted [1]. The middle 
cerebral artery (MCA) region is where around 88% of 
ischemic strokes occur [2]. Several models of ischemic 
stroke, including intraluminal MCA occlusion (MCAo), 
photothrombosis, and endothelin-1, are currently uti-
lized for animal stroke studies [3]. Among these models, 
MCAo by intraluminal monofilament insertion is the 
most frequently used because it closely mirrors the gen-
eral pattern of the human ischemic brain and can be used 
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for both transient and permanent focal CI [4]. However, 
the MCAo model has limitations in producing reproduc-
ible CI due to surgical manipulation under anesthesia.

General anesthesia is used in in  vivo experiments to 
induce immobility and unconsciousness and as an anal-
gesic [5]. There are two major types of general anesthetic 
agents: injectable and inhalational anesthetics. Inject-
able anesthetics, including pentobarbital, ketamine, and 
propofol rapidly induce loss of consciousness with a 
small dose [6, 7]. However, injectable anesthetics cause 
medullary paralysis and sudden cardiac arrest due to 
unpredictable anesthetic depth [8]. Inhalational anesthet-
ics, like ether and isoflurane, are used in experimental 
surgical procedures regardless of the species [9]. Isoflu-
rane has several benefits, including fast recovery, prompt 
elimination, low hepatotoxicity, and low mortality [10]. 
However, exposure to high concentrations of inhalational 
anesthetics can cause deficits, including apnea, hypoxia, 
and unconsciousness [11].

Low mortality and reproducible brain infarct volume 
(BIV) in rodent stroke models are affected by various fac-
tors, including surgical technique, environmental vari-
ation, and prolonged duration of surgery under general 
anesthesia [12, 13]. Particularly, the choice and time of 
anesthesia and analgesia can significantly affect stroke 
model outcomes [14]. The objective of the present study 
is to explore an appropriate method and timing of anes-
thesia to avoid potential side effects that could result in 
unexpected complications in the MCAo model. We con-
ducted a comparative study to evaluate the effects of iso-
flurane and xylazine on MCAo-induced ischemic injury 
in mice to achieve this goal.

Materials and methods
Animals
The animal study was approved by the Institutional Ani-
mal Care and Use Committee (IACUC) at Inje University 
(approval no. 2015-11, 2018-005) and conducted follow-
ing the Inje University Animal Care guidelines and the 
Korean Department of Agriculture. All animals were 
maintained under a 12 h dark/light cycle with free access 
to laboratory chow and drinking water. C57BL/6 male 
mice weighing 20–25  g (8-week-old) were used in this 
experiment.

Experimental groups
Sixty-nine animals were used in this study. Animals 
were randomly divided into four groups: sham group 
(no MCAo, n = 5), control group (MCAo under Isoflu-
rane; no agent, n = 14), isoflurane group (MCAo under 
Isoflurane, 1.5% isoflurane anesthesia continued till 
reperfusion, n = 25), xylazine group (MCAo under Iso-
flurane, intramuscular xylazine injection (20  mg/kg) 

10 min before artery occlusion, and 30 min post-occlu-
sion, n = 25) (Fig. 1).

Focal ischemic‑reperfusion stroke model
The experimental stroke model was performed accord-
ing to the modified Longa model [15]. The MCAo was 
induced by an intraluminal suture in the MCA. The 
duration of surgical procedures did not exceed 20 min, 
and the operation time from the induction of anesthe-
sia to artery occlusion was limited to 30 min. The right 
common carotid artery (CCA) was carefully separated 
from the vagus nerve and ligated temporarily. The 
CCA was bifurcated into the external carotid artery 
(ECA) and internal carotid artery. A monofilament 
(6.0; silicon-coated tip, 0.22–0.23  mm; Doccol Corpo-
ration, CA, USA) was used to occlude blood flow. The 
suture was inserted 9 to 11 mm into the ECA to block 
the origin of the right MCA. Reperfusion by removal of 
monofilament was performed after 60  min occlusion. 
The body temperature of the mice was maintained at 
37 ± 1 °C during occlusion and after reperfusion. Sham 
groups underwent the same anesthesia and surgical 
procedures as MCAo groups, except the intraluminal 
filament was not advanced to the origin of the MCA.

Fig. 1 Schematic presentation of the experimental design. Animals 
were subjected to transient focal ischemia for 60 min after MCAo. 
Animals were randomly divided into four groups: sham group 
(no MCAo), control group (Con, MCAo under Isoflurane; no agent 
till reperfusion), isoflurane group (MCAo under Isoflurane, 1.5% 
isoflurane anesthesia continued till reperfusion), xylazine group 
(MCAo under Isoflurane, intramuscular xylazine injection (20 mg/kg) 
10 min before artery occlusion, and 30 min post‑occlusion). 5 (sham), 
14 (control), 25 (ISO), 25 (Xyl) animals were used in this study
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Induction and maintenance of anesthesia
Animals were anesthetized with isoflurane in a mixture 
of 30%  O2 and 70%  N2O using the anesthesia system 
(Harvard Apparatus Inc., Holliston, MA, USA). Induc-
tion of anesthesia was mediated by 3% isoflurane in a 
sealed chamber. After the isoflurane induction, anesthe-
sia maintenance was achieved by 1.5% isoflurane via face-
mask during MCAo surgery, taking about 20 min.

Evaluation of neurological deficit
Neurological deficits were scored in a blind manner using 
a neurological disability status score after 72 h of reper-
fusion, which grades neurological deficiencies from 0 
(normal) to 10 (most severe injury/death) (Table 1). The 
precise grade was based on neurobehavioral alterations 
that were divided into two phases [16].

Quantification of infarct volume
2,3,5-triphenyl tetrazolium chloride (TTC) was used to 
determine the BIV. Animals were subjected to MCAo, 
euthanized at 72 h, and perfused with 0.01 M phosphate-
buffered saline (pH 7.4) immediately following sacri-
fice in order to minimize autolysis which begins in the 
absence of oxygen following death. Using a mouse brain 
slicer, the brain was cut into 1 mm thick slices for analy-
sis of the infarct area and volume (Mouse Brain Matrix; 
ASI Instruments, Warren, MI, USA). Brain sections were 
immersed for 10  min in 2% TTC (Sigma-Aldrich, St. 
Louis, MO, USA) at 37  °C. The infarct area  (mm2) was 
measured using the set scale function of Image J soft-
ware (NIH, Bethesda, MD, USA). The brain infarct area, 

excluding brain tissue edema, was based on the contralat-
eral hemisphere area. The sum of the measured infarct 
area is used to calculate the total BIV  (mm3) according to 
modified trapezoidal and Simpson’s rule [17].

Statistical analysis
Data were collected from repeated experiments and 
are presented as means ± standard deviation (SD). Sta-
tistically significant differences between groups were 
assessed using one-way ANOVA with the post hoc Tuk-
ey’s test. Statistical significance was set at p < 0.05. All 
data were analyzed using SPSS software (IBM, New York, 
NY, USA).

Experimental procedure and impact of MCAo‑induced CI 
on physiological responses
The MCAo surgery was conducted on animals under 
general anesthesia using isoflurane. Following MCAo 
induction, the animals were divided into sham, control, 
isoflurane, and xylazine groups at random (Fig. 1). Base-
line weight was measured immediately before MCAo, 
and the body weight was monitored every 24  h post-
reperfusion for 72  h. Animals in control and isoflurane 
showed a significant decline in body weight following 
MCAo as compared with baseline weight. However, 
there was a statistically significant difference between 
the control and xylazine group (panel A in Fig. 2). These 
alterations indicate that physiological change might be 
associated with CI induced by MCAo.

The effect of prolonged anesthesia on survival rate 
in MCAo
Survival data were presented in the Kaplan-Meier curve 
and data analyses were performed using the log-rank 
test (panel B in Fig. 2). No mortality was observed in the 
sham group, indicating a lack of acute toxicity of anes-
thetics. A significant change in the survival curve was 
observed within 24 h after reperfusion in the control and 
isoflurane groups. Sudden death during post-occlusion 
mainly occurred in the isoflurane group, and a high risk 
of mortality at 1 h after reperfusion was observed in the 
control group. After 72 h, the control group showed the 
lowest survival rate (~ 71%) followed by the isoflurane 
group (~ 73%). On the other hand, the xylazine group 
showed a high survival rate of ~ 77% at 72 h. The sedative 
and analgesic effects of xylazine might cause a positive 
result in the survival rate [18, 19].

A comparison of ischemic outcome between awake 
and anesthetized states during transient CI by MCAo
We compared the BIV and behavior outcome to deter-
mine the effect of different anesthesia during MCAo. The 
BIV was visualized by TTC staining (panel A in Fig. 3). 

Table 1 Neurological disability status scale (NDSS)

Degree of deficit Neurobehavioral alterations

0 None

2 Hypomobility (slight)
Passivity

4 Hypomobility (moderate)
Flattened posture
Lateralized posture
Hunched back
Ataxic gait
Piloerection
Decreased body tone
Decreased muscular strength
Motor incoordination (slight)

6 Circling
Tremor/twitches/convulsions
Forelimb flexion
Motor incoordination (moderate)

8 Hypomobility (severe)
Motor incoordination (severe)
Respiratory distress

10 Death (due to MCAo)
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The BIV (panel B in Fig. 3) and neurologic deficits were 
reduced in the isoflurane group compared with the con-
trol and the xylazine group (panel C in Fig. 3). However, 
there was no statistically significant difference between 
the groups. The xylazine group showed that ischemic 
outcomes including BIV and neurological dysfunction 
were similar to those in the control group. Thus, we sug-
gest that the modified MCAo method under conscious 
conditions administered xylazine could reduce the risk 
of mortality and enhance the high reproducibility of the 
MCAo model.

Implications of the present research
We showed that animals subjected to MCAo have shown 
a decline in weight. Bodyweight is used as a potential 
supplementary parameter for predicting BIV and neu-
rological impairment in preclinical stroke research [20, 
21]. Previous studies demonstrated a significant decrease 
in body weight by approximately 10% at 24  h after the 
onset of MCAo [22]. In contrast, when exposed to iso-
flurane anesthesia, sham animals showed no significant 

changes in body weight over time. However, animals in 
the control and isoflurane groups showed a significant 
decrease in body weight following MCAo compared to 
their baseline weight. Interestingly, there was a signifi-
cant difference in body weight between the control and 
xylazine groups. These findings suggest that physiologi-
cal responses are associated with brain injury caused by 
MCAo but not affected by isoflurane anesthesia.

We observed that the xylazine group achieved a higher 
survival rate than that of other groups, while the sham 
group exhibited no mortality. Although convulsive sei-
zure and hemorrhage did not occur, unexpected death 
with cardiac arrest was observed in the prolonged iso-
flurane anesthesia group. The results of the present study 
are consistent with those found in previous studies which 
showed that anesthetics can affect the cardiovascular sys-
tem, including the heart, blood vessels, and arterial blood 
pressure [23]. Animals exposed to prolonged isoflurane 
during the occlusion period showed a significant reduc-
tion in mean arterial pressure by approximately 20–25 
mmHg, which may explain the relationship between 

Fig. 2 Effect of MCAo‑induced cerebral ischemia and prolonged anesthesia on physiological activity and survival rate. A Alterations from baseline 
body weight to 24 h after MCAo. Body weight was measured before the MCAo and 72 h post‑reperfusion. Data are presented as mean ± S.D. B 
Survival rate is defined as the percentage of surviving animals from induction of ischemia‑reperfusion until ischemic brain injury assessment. 
Survival data were expressed by the Kaplan–Meier curve, and compared using the log‑rank test. 5 out of 5, 10 out of 14, 18 out of 25, and 19 out of 
25 animals survived in sham, control, ISO, and Xyl groups, respectively. Mortality data were recorded for 72 h to conduct a survival analysis. 5 (sham), 
14 (control), 25 (ISO), and 25 (Xyl) animals were used in this study. Data are presented as mean ± S.D p‑value was considered significant at *p < 0.005
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anesthesia-related hypotension and cardiac arrest [24]. 
Also, survival results indicate that isoflurane anesthesia 
might be associated with an increased risk of mortal-
ity after MCAo probably because isoflurane has little to 
no analgesic potency [18]. Therefore, with this study, we 
suggest that long-term anesthesia with isoflurane during 
MCAo can decrease the survival of animals.

Finally, the BIV and neurologic deficits were assessed 
to investigate the effect of anesthesia on CI. Although 
the survival rate was increased in the xylazine group 
compared to the other groups, the extent of brain dam-
age was highly sensitive to transient MCAo and rep-
erfusion injury. The xylazine group presented slightly 

more infarction and neurologic dysfunction compared 
with those observed in the isoflurane group. Vascular 
endothelial growth factor (VEGF) is a major regulator 
of normal and pathologic blood vessel growth. However, 
VEGF also has the unique property of inducing vascular 
leakage [25, 26]. Matrix metalloproteinase-9 (MMP-9) 
is an enzymatic protein that degrades the extracellular 
matrix and may cause degradation of the blood–brain 
barrier (BBB) after MCAo [27]. The MMP-9 might be 
activated by VEGF [28]. Thus, MMP-9 activation may 
cause both breakdowns of the BBB and intracranial hem-
orrhage after MCAo. Anesthetic treatment in ischemia-
reperfusion models results in the down-regulation of 

Fig. 3 Comparison of ischemic brain injury in MCAo mice. A Representative images of TTC‑stained brain slices from bregma + 4.0 mm to bregma 
− 4.0 mm. Ischemic injury induced by MCAo was measured at 72 h post‑reperfusion. B Quantitative analysis of infarct volume. Total infarct volume 
was measured using a TTC image and presented as a percentage of contralateral hemisphere volume. C Quantitative assessment of neurologic 
deficits. Neurobehavioral alteration resulting from ischemic injury was assessed by NDSS at 72 h after reperfusion. Data are presented as mean ± S.D. 
5 (sham), 14 (control), 25 (ISO), and 25 (Xyl) animals were used in this study
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MMP-9 and VEGF expression [22, 29], thereby reducing 
the BIV.

Limitations and future prospective
A limitation of this study is the lack of postoperative 
analgesia administration. We chose not to administer 
analgesics due to the dual analgesic and anesthetic effects 
of xylazine used with isoflurane [18]. The inclusion of 
postoperative analgesia could have influenced the study 
outcome. Further research is recommended to compare 
the effects of isoflurane and xylazine on transient CI in a 
mouse model of MCAo, while considering postoperative 
analgesics. This would provide a more comprehensive 
evaluation of analgesic impact on study outcomes, while 
prioritizing animal welfare. Further analysis of VEGF 
and MMP-9 mRNA and protein is needed to confirm 
the impact of modified anesthesia on intracranial hem-
orrhage after MCAo and determine the efficacy of iso-
flurane in reducing cerebral ischemic injury. Additional 
research is necessary to draw definitive conclusions 
about the effectiveness of isoflurane.

Conclusions
We demonstrated that minimized use of isoflurane 
improves the survival rate in a mouse model of MCAo. 
The modified method of isoflurane combined with xyla-
zine for conscious sedation could reduce the risk of 
mortality and provide a reproducible MCAo model. In 
conclusion, we suggest that the experimental animal 
models requiring general anesthesia should avoid pro-
longed periods of anesthetic exposure.
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