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Abstract 

Background Liver fibrosis is an early stage of liver cirrhosis. As a reversible lesion before cirrhosis, liver failure, and 
liver cancer, it has been a target for drug discovery. Many antifibrotic candidates have shown promising results in 
experimental animal models; however, due to adverse clinical reactions, most antifibrotic agents are still preclinical. 
Therefore, rodent models have been used to examine the histopathological differences between the control and 
treatment groups to evaluate the efficacy of anti‑fibrotic agents in non‑clinical research. In addition, with improve‑
ments in digital image analysis incorporating artificial intelligence (AI), a few researchers have developed an auto‑
mated quantification of fibrosis. However, the performance of multiple deep learning algorithms for the optimal 
quantification of hepatic fibrosis has not been evaluated. Here, we investigated three different localization algorithms, 
mask R‑CNN,  DeepLabV3+, and SSD, to detect hepatic fibrosis.

Results 5750 images with 7503 annotations were trained using the three algorithms, and the model performance 
was evaluated in large‑scale images and compared to the training images. The results showed that the precision val‑
ues were comparable among the algorithms. However, there was a gap in the recall, leading to a difference in model 
accuracy. The mask R‑CNN outperformed the recall value (0.93) and showed the closest prediction results to the 
annotation for detecting hepatic fibrosis among the algorithms.  DeepLabV3+ also showed good performance; how‑
ever, it had limitations in the misprediction of hepatic fibrosis as inflammatory cells and connective tissue. The trained 
SSD showed the lowest performance and was limited in predicting hepatic fibrosis compared to the other algorithms 
because of its low recall value (0.75).

Conclusions We suggest it would be a more useful tool to apply segmentation algorithms in implementing AI algo‑
rithms to predict hepatic fibrosis in non‑clinical studies.
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Introduction
Liver fibrosis is an abnormal repair reaction in chronic 
liver injury characterized by the excessive production 
and accumulation of extracellular matrix (ECM) in the 
liver. It is caused by chronic hepatitis B (CHB), chronic 
hepatitis C (CHC), alcoholic fatty liver disease (AFLD), 
and other causes [1–4]. Liver fibrosis begins with pro-
inflammatory reactions; liver tissues’ standard structure 
and physiological function are gradually destroyed. This 
causes the production of scar tissue that replaces the 
liver parenchyma and further progress into more severe 
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consequences, such as liver cirrhosis, liver failure, or liver 
cancer, eventually leading to patient death of patients [5]. 
However, liver fibrosis is reversible in the early stages of 
cirrhosis; therefore, it is a top priority in treating liver 
conditions. This treatment aims to reduce or reverse 
hepatic fibrosis by reducing inflammation, protecting 
the liver, preventing the proliferation and activation of 
hepatic stellate cells (HSCs), and restraining ECM pro-
duction and deposition [6, 7]. Many antifibrotic candi-
date drugs have shown reliable results in experimental 
animal models; however, they have shown limited effects 
in the clinical phase owing to the complicated patho-
logical mechanisms of liver fibrosis. Adverse reactions 
induced by large doses are one of the leading causes of 
failure. Most drugs targeting liver fibrosis caused by vari-
ous factors in chronic liver diseases are still in the pre-
clinical stage of development [8].

Rodent models have usually been used to evaluate 
the efficacy of anti-fibrotic therapeutics in non-clinical 
research in which histopathological differences between 
the control and treatment groups are examined. The 
accurate quantification of liver fibrosis is pivotal for 
assessing the efficacy of novel anti-fibrotic candidates. 
Conventionally, semi-quantitative histological evaluation 
has been the method of choice for liver fibrosis assess-
ment [9, 10] and is still regarded as the gold standard. 
In the last two decades, there have been significant pro-
gress in digital image analysis (DIA) for analyzing biopsy 
specimens. Researchers have focused on developing 
automated methods to quantify fibrosis by determining 
the ratio of fibrosis areas to the total area of liver tis-
sue examined. This is done using a measurement called 
the proportionate collagen area (CPA), which calculates 
the extent of fibrosis in relation to the entire liver tissue 
area analyzed. [11–14]. Furthermore, recent studies have 
started to adopt deep learning methods to score hepatic 
fibrosis in rodent models [15–17]. These methods have 
shown reliable correlations with pathologist scoring sys-
tems, even at the whole-slide image (WSI) level [17]. 

However, it is crucial to evaluate the effectiveness of dif-
ferent artificial intelligence (AI) algorithms and deter-
mine the most appropriate AI before implementing a 
specific algorithm for pathological use.

As previous studies have shown, localizing and separat-
ing the lesion of interest on the slide is essential to quan-
tify and visualize abnormalities [17, 18]. However, those 
studies used only one algorithm, not the other detection 
type of algorithm. Therefore, in this study, we examined 
the performance of three different localization algo-
rithms for detecting hepatic fibrosis: SSD [19], an object-
detection algorithm, and two segmentation algorithms: 
Mask R-CNN [20] and  DeepLabV3+ [21]. We considered 
Mask R-CNN and  DeepLabV3+ because of the morphol-
ogy of fibrosis, atypical and polygonal shape; thus, we 
assumed that the segmentation algorithm would be more 
efficient in recognizing the lesion. In contrast, SSD was 
selected because of its fast speed in detecting an objec-
tive in an image in real-time. Pathologists can diagnose a 
slide quickly by using a microscope to determine whether 
the slide has fibrotic lesions. Therefore, if the SSD shows 
an accuracy comparable to that of the segmentation algo-
rithms, it could be more valuable than the others. In this 
study, to investigate the proper deep learning algorithm 
for detecting liver fibrosis, we evaluated the performance 
of each model using precision and recall based on pre-
dicting fibrosis on large-scale images rather than trained 
images.

Results
Algorithm training
All the losses during training were calculated and 
recorded as total losses. Although the loss components 
calculated during training differed according to the algo-
rithm, the loss values stabilized steeply during the early 
phase of learning (Fig. 1). The loss values observed in this 
study show that algorithm learning was successfully per-
formed using the training dataset. After the model train-
ing, each algorithm’s mean intersection of union (mIoU) 

Fig. 1 Total loss according to algorithm models observed in every epoch during the training
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was calculated for the test dataset. Consequently, the 
mIoU value of the two segmentation algorithms was 0.76, 
comparable to the ground-truth annotations, and that of 
the SSD was 0.82.

Model accuracy
According to the trained weight (Fig.  1), the results 
showed that the two segmentation algorithms (Mask 
R-CNN and  DeepLabV3+) predicted hepatic fibrosis 
closer to the ground truth label than the object detec-
tion algorithm SSD; in particular, the trained Mask 
R-CNN algorithm showed the closest prediction to the 

ground truth annotation compared with other algorithms 
(Fig. 2).

We also calculated the precision, recall, F1 score, and 
accuracy based on the ground-truth labels to mathemati-
cally evaluate the model’s performance.

The results showed that the performances of the two 
segmentation models were better than that of the SSD 
object detection model. Similar values were obtained 
to evaluate the prediction accuracy of each algorithm. 
However, the algorithms had differences in recall values 
(Table  1). The Mask R-CNN showed the highest values 
for all parameters related to the model performance for 
detecting hepatic fibrosis and the highest recall value. 

Fig. 2 Prediction result of each trained algorithm on 2688*2688 pixels of images. Yellow arrows point to the region of ground truth labels. Mask 
R‑CNN detected hepatic fibrosis the most similar to the ground truth labels
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The performance of the SSD model was lower than that 
of the segmentation algorithms showing the lowest recall 
value when compared with the two segmentation algo-
rithms. This indicates that SSD is limited in detecting 
hepatic fibrosis close to the ground-truth annotation.

Discussion
To investigate the proper deep learning algorithm for 
detecting hepatic fibrosis in a non-clinical study, we 
investigated three different localization algorithms 
for detecting hepatic fibrosis: SSD, mask R-CNN, and 
 DeepLabV3+. A total of 5750 images with 7503 annota-
tions were trained using the three algorithms, and the 
total loss in each model was observed during training. 
Loss occurs because of the estimation error of the model 
when a learned model is applied to real data; therefore, 
the smaller the loss, the better the model. The two seg-
mentation algorithms, Mask R-CNN and  DeepLabV3+, 
showed smaller loss value ranges than the object detec-
tion algorithm SSD; thus, the training of the two former 
algorithms was more successful than that of SSD. After 
training, the mean interaction of union (mIoU) of the 
test dataset was calculated by comparing the annota-
tions to the prediction results that refer to the trained 
weight of each algorithm. There was a difference in the 
calculation method for the intersection of union (IoU) 
between the two segmentation algorithms and SSD. A 
segmentation algorithm compares the annotation to the 
prediction results based on the area, whereas the SSD 
uses the prediction rate for the number of labels. There-
fore, the IoU values of the segmentation algorithms can 
vary according to the IoU between the prediction by the 
trained model and the ground truth label. In the case 
of SSD, the IoU was defined by three values (1, 0.5, and 
0.33) according to the prediction rates of 100%, 50%, and 
33% of the predicted hepatic fibrosis, respectively, com-
pared with the number of ground truth labels. Therefore, 
it tends to be overestimated compared with the IoU val-
ues from the segmentation algorithms, which are calcu-
lated based on the area and region between the ground 
truth and the prediction. Thus, the mIoU calculated from 
the three algorithms had a limitation in comparing their 
performances.

To overcome this limitation and confirm its perfor-
mance on a large-scale image, we evaluated the preci-
sion, recall, F1 score, and accuracy of the predictions of 
2688 × 2688 pixel images for each trained algorithm. The 
trained Mask R-CNN outperformed the other algorithms 
in predicting hepatic fibrosis, although it mispredicted 
inflammatory cells and connective tissue as hepatic fibro-
sis (Fig.  2b). The trained  DeepLabV3+ tended to detect 
inflammatory cells and connective tissue in hepatic fibro-
sis better than the trained Mask R-CNN (Fig.  2c). The 
trained SSD showed the lowest performance in detect-
ing hepatic fibrosis among the two segmentation algo-
rithms. Blood vessels were not excluded from the images 
(Fig. 2d).

The parameters related to the model accuracy also 
proved the segmentation algorithms’ high performance 
compared to the objective detection algorithm. A high 
recall value indicated that detecting hepatic fibrosis by 
the trained algorithm was closest to the ground truth. 
The trained Mask R-CNN exhibited good performance 
on the test images. This tendency is reflected well in 
the prediction results in Fig. 2, where the Mask R-CNN 
identified the inflammatory lesions and connective tis-
sue from hepatic fibrosis better than the other segmen-
tation algorithm,  DeepLabV3+. Therefore, the trained 
Mask R-CNN results for detecting hepatic fibrosis in 
the test image were the closest to the ground truth label 
and showed the highest accuracy compared to any other 
model. The other segmentation algorithm,  DeepLabV3+, 
used in this study, DeepLabV3+, performed comparably 
to the Mask R-CNN. However, it has a recall limitation 
owing to the frequent misprediction of inflammatory 
cells and connective tissue in hepatic fibrosis.

In contrast, the trained SSD, an object detection model, 
showed the lowest values related to model accuracy 
compared with the segmentation algorithms, especially 
regarding the recall and the ability to predict hepatic 
fibrosis compared with ground truth annotations. This 
result is presented in Fig.  2d as empty detection results 
with yellow arrows, indicating that the trained SSD did 
not predict hepatic fibrosis as well as the other algo-
rithms. Indeed, the bounding-box-based detection algo-
rithm might be suitable for detecting an object that can 
be filled in the bounding box, such as an automobile, but 
not for atypical and long-shaped objects, such as hepatic 
fibrosis. Therefore, the SSD may not be a suitable algo-
rithm for detecting hepatic fibrosis.

A previous study by Ramot et  al. [16] demonstrated 
automated quantification of liver fibrosis in mice using a 
segmentation algorithm, U-net, with two magnifications 
(10× and 40×) of picrosirius red-stained slide images. 
The F1 score of the study (0.8775) was similar to the value 
observed in this study (0.87 for Mask R-CNN), although 

Table 1 Precision, recall, F1 score, and accuracy were calculated 
from a large‑scale image prediction test

Precision Recall F1 score Accuracy

Mask R‑CNN 0.82 0.93 0.87 0.86

DeepLabV3+ 0.81 0.88 0.84 0.83

SSD 0.83 0.75 0.79 0.79
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the staining method and trained algorithm were differ-
ent [16]. This result supports our previous study [17], 
which showed the possibility of applying a Mask R-CNN 
to quantify hepatic fibrosis at the WSI level. In addition, 
the results from this study showed again that the imple-
mentation of Mask R-CNN could successfully quantify 
hepatic fibrosis using H&E staining, a general staining 
method for tissue analysis, instead of specific staining, 
such as Sirius red or Masson’s trichrome staining.

Conclusions
In this study, the Mask R-CNN outperformed the oth-
ers in detecting hepatic fibrosis, especially regarding the 
recall value; therefore, it showed the closest prediction 
results among the algorithms. The other segmentation 
algorithm,  DeepLabV3+, showed comparable accuracy 
to the Mask R-CNN; however, it showed a lower pre-
diction rate for detecting hepatic fibrosis than the Mask 
R-CNN. SSD showed the lowest accuracy and ability to 
predict hepatic fibrosis compared with the segmenta-
tion algorithms. Therefore, we suggest that segmentation 
algorithms can help to implement artificial intelligence 
algorithms to predict toxicological lesions in non-clinical 
studies.

Methods
Animal experiments
N-nitrosodimethylamine (NDMA) was administered 
to the test animals via a four-week repeated intraperi-
toneal injection to induce hepatic fibrosis in Sprague-
Dawley (SD) rats. Details of the animal experiments have 
been described previously [17]. Briefly, 1 mL/kg NDMA 
(10 mg/10 mL) was administered to 6-to 7-week-old SD 
rats via intraperitoneal (IP) injection three times a week 
for four weeks (total of 12 times). After chemical admin-
istration, the test animals were euthanized using isoflu-
rane, and their livers were collected in 10% formaldehyde. 
After tissue collection, hematoxylin and eosin (H&E) 
staining was performed using paraffin-embedded left lat-
eral and median lobes of the liver, and the sections were 
used for digital archiving.

Data preparation
Data preparation for training on hepatic fibrosis was con-
ducted as described in previous studies [17, 18]. Briefly, 
10× magnified whole-slide images (WSIs) of liver sec-
tions were cropped into 448 × 448 pixel tile images, and 
all lesions were labelled. We annotated all fibrotic lesions 
in the tile images using VGG Image Annotator 2.0.1.0 
(Visual Geometry Group, Oxford University, UK), and 
an accredited toxicological pathologist confirmed the 
annotations before algorithm training was initiated. 
The annotation information was saved in a JSON file. A 

total of 500 image tiles were obtained from 12 WSIs. The 
lesions identified in these images were labeled, and 663 
annotations were obtained. The training test split func-
tion embedded in the scikit-learn package was used to 
split the annotated image tiles into training, validation, 
and test datasets at a ratio of 7:2:1. Data augmentation 
was conducted to improve the training dataset. It was 
performed 16 times using image-augmenting techniques 
(reverse, rotation, and brightness). A total of 5600, 100, 
and 50 images were used for training, validation, and 
testing, respectively, and the number of annotations was 
7296, 140, and 67, respectively.

Training of hepatic fibrosis and metrics for model 
performance
Model training
TensorFlow 2.1.0, Keras 2.4.3 backend, and PyTorch were 
used for conducting algorithm training. We applied three 
open-source packages (Mask R-CNN: torchvision [22], 
DeepLabV3+: jfzhang95 pytorch-deeplab-xception pack-
age [23], SSD: amdegroot ssd.pytorch package [24]) to 
train the hepatic fibrosis, and all the requirements for the 
packages were met in this study. Algorithm calculation 
during the training was powered by an NVIDIA RTX 
3090 24G GPU. The hyperparameters were set differently 
for each algorithm because of the varying hyperparam-
eter requirements according to the algorithm, and Mask 
R-CNN used the same settings as in previous studies [17, 
18]. Details are presented in Table 2. Every loss calculated 
using the algorithm during training was recorded and 
saved.

Metrics for model performance
To evaluate the performance of each trained model, 
we compared the precision, recall, F1 score, and accu-
racy calculated from the prediction of hepatic fibrosis 

Table 2 Hyperparameters used in Mask R‑CNN,  DeepLabV3+, 
and SSD

Mask R-CNN DeepLabV3+ SSD

BACKBONE = resnet152 BACKBONE = “resnet” COCO_API = 
“PhythosAPI”

DIST_BACKEND = “nccl” LR = 0.01 EPOCHS = 400

BATCH_SIZE = 16 EPOCHS = 200 BATCH_SIZE = 64

LR = 0.005 BATCH_SIZE = 32 LR = 0.00003

EPOCHS = 200 DATASET = “coco” WEIGHT_
DECAY = 0.00003

WORKERS = 16 MASK_THRESH‑
OLD = 0.6

MOMENTUM = 0.9

LR_STEPS = 16, 22 CONFIDENCE = 0.5

CONFIDENCE = 0.5
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using 60 large-scale images (2688 × 2688 pixels). First, 
the ground truths of the test images were annotated 
using the same procedure used to prepare the train-
ing data to calculate these values. Then, the values were 

defined as the ratio of true positives, false positives, and 
false negatives according to the presence or absence of 
lesion detection in the 448 × 448 pixels of tiles derived 
from 2688 × 2688 images compared to the ground truth 

Fig. 3 The process to calculate the parameters regarding the examination of model performance in large‑scale images. True and false are 
determined by comparing the ground truth annotation to the prediction results according to the weight of each model at the level of 448 × 448 
pixels of tiles
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labels. A schematic diagram for calculating the preci-
sion, recall, F1 score, and accuracy in larger-scale test 
images is depicted in Fig.  3. The precision, recall, and 
accuracy are defined as follows (a–d):

(a) 

  
(b) 

  
(c) 

  
(d) 
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