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Abstract 

Background  Although radiotherapy is commonly used to treat head and neck cancer, it may lead to radiation-asso‑
ciated dysphagia (RAD). There are various causes of RAD, however, the mechanism has not yet been fully identified. 
Currently, the only effective treatment for RAD is rehabilitation. Additionally, there are few available animal models 
of RAD, necessitating the development of new models to establish and evaluate RAD treatments. We hypothesize 
that radiation-induced neck muscle fibrosis could be one of the causes of RAD due to impairment of laryngeal eleva‑
tion. Therefore, in this study, we focused on the changes in inflammation and fibrosis of the strap muscles (Sternohy‑
oid, Sternothyroid, and Thyrohyoid muscles) after a single-dose irradiation. This research aims to provide a reference 
animal model for future studies on RAD.

Results  Compared to control mice, those treated with 72-Gy, but not 24-Gy, irradiation had significantly increased 
tumor necrosis factor-α (TNF-α) (p < 0.01) and α-smooth muscle actin (αSMA) (p < 0.05) expression at 10 days and sig‑
nificantly increased expression levels of motif chemokine ligand-2 (CCL2), α-SMA, tumor growth factor-β1 (TGF-β1), 
type1 collagen, and interleukin-1β (IL-1β) (p < 0.05) in the muscles at 1 month by real-time PCR analysis. The results 
of immunohistochemistry showed that the deposition of type 1 collagen gradually increased in extracellular space 
after radiation exposure, and the positive area was significantly increased at 3 months compared to non-irradiated 
control.

Conclusions  A single dose of 72-Gy irradiation induced significant inflammation and fibrosis in the strap muscles 
of mice at 1 month, with immunohistochemical changes becoming evident at 3 months. This cervical irradiation-
induced fibrosis model holds potential for establishing an animal model for RAD in future studies.

Level of evidence  N/A.
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Background
The treatment approaches for head and neck cancer 
(HNC) include surgery, radiotherapy (RT), and chemo-
therapy [1, 2]. Although RT is effective against cancers, it 
can damage nearby normal tissues, resulting in radiation-
associated dysphagia (RAD) [3, 4]. Chemoradiotherapy 
can result in impaired coordination of swallowing phases 
due to reduced laryngeal elevation, delayed laryngeal 
closure, loss of tongue strength, and prolonged oral and 
pharyngeal time during swallowing [5, 6]. Furthermore, 
the peripheral and cranial nerves that innervate the swal-
lowing musculature, including the intrinsic laryngeal 
musculature [7], are at risk of radiation damage, which 
can trigger neurogenic dysphagia due to motor and sen-
sory deficits [8]. Laryngeal elevation, supported by the 
thyrohyoid and stylohyoid strap muscles in the neck, 
plays a crucial role in protecting the airway from aspi-
ration of during swallowing. Cervical radiation-induced 
fibrosis (RIF) can lead to strap muscle fibrosis, impairing 
laryngeal elevation and causing RAD in HNC survivors 
[9]. Currently, the only effective treatment for RAD is 
rehabilitation [10, 11]. Moreover, no functional or his-
tological assays are available for the evaluation of RIF of 
strap muscles.

In this preliminary study, we subjected mice to a sin-
gle dose of irradiation to their necks, and evaluate the 
temporal changes in inflammation and fibrosis levels 
in strap muscles at three time points. By verifying the 
inflammation and fibrosis levels in cervical RIF model 

over the short term, an effective mouse model of RAD 
may be developed in the future.

Methods
Experimental animals
Thirty C57BL/6 J male mice aged 8 weeks were obtained 
from CLEA Japan (Tokyo, Japan) and acclimated in an 
animal facility for 1 week before the experiments. The 
mice were housed in cages under a 12-h light/dark 
cycle with ad  libitum access to food and water. The 
study protocol was approved by Nagasaki University 
(no.: 2110131754).

Development of the cervical RIF mouse model
Mice were anesthetized by intraperitoneal injection 
of an anesthetic reagent composed of medetomidine 
(0.3  mg/kg), butorphanol (5  mg/kg), and midazolam 
(4 mg/kg). The mice were positioned on their left side 
and subjected to irradiation of the anterior neck from 
the right side using Isovolt Titan (GE Inspection Tech-
nologies, Hürth, Germany) (upper panel in Fig.  1A). 
The head and trunk were covered with arched lead to 
prevent radiation exposure except to the neck. The 
mice received a single dose of 24- or 72-Gy irradiation 
(1.3948 Gy/min) and were sacrificed 10 days, 1 month, 
or 3 months thereafter (n = 6 for each condition) (lower 
panel in Fig. 1A).

Fig. 1  Experimental design. A A lead cover was used to cover the body of the mice, except for the neck. The mice received a single dose 
of 24- or 72-Gy irradiation and were sacrificed 10 days, 1 month, or 3 months thereafter. B Schematic showing the location of cervical neck muscles
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Gene expression analysis using quantitative real‑time PCR 
(qPCR)
Mice were sacrificed at the indicated time point (10 days, 
1 month, or 3 months) followed by isolation of the strap 
muscles. Total RNA was extracted from strap muscles 
using RNAiso (TaKaRa Bio, Inc., Tokyo, Japan) accord-
ing to the manufacturer’s instructions. Then, 500  ng of 
total RNA was reverse-transcribed to cDNA using Pri-
meScript™ RT Master Mix (TaKaRa Bio, Inc.). The gene 
expression levels of α-smooth muscle actin (α-SMA), 
tumor growth factor (TGF-β), Col1, tumor necrosis fac-
tor TNF-α, C–C motif chemokine ligand 2 (CCL2), inter-
leukin (IL)-1β, and GAPDH were measured using the 
CFX Connect™ Real-Time PCR Detection System (Bio-
Rad Laboratories, Hercules, CA, USA) and iTaq™ Uni-
versal SYBR® Green Supermix (Bio-Rad Laboratories). 
Primer sequences were listed in Table 1. The expression 
level were normalized by internal control (GAPDH). 
Relative gene expression levels were represented as com-
parative CT (ΔΔCt)value that compare to control group.

Histology and immunohistochemistry
The anterior neck muscle tissues were fixed in 4% para-
formaldehyde in phosphate-buffered saline (PBS; pH 7.4) 
immediately after sampling and embedded in paraffin for 
histological examination and immunohistochemistry. For 
morphological examination, 4 μm-thick paraffin-embed-
ded tissues were stained with hematoxylin–eosin staining 
according to general protocol.

For immunohistochemistry of type 1 collagen, which 
was used as a fibrosis marker, the sections were deparaffi-
nization and treated with 10  mM sodium citrate buffer 
pH6 (RM102-C; LSI medience) for 10  min at 120℃ for 
antigen retrieval. The sections were treated with 0.3% 
H2O2 in methanol for 15  min to inactivate endogenous 
peroxidase activity and then incubated with a blocking 
solution (5% normal goat serum) for 1  h at room tem-
perature (RT). The sections were then incubated with the 
rabbit anti-type 1 collagen antibody (1:200; #72026; Cell 
Signaling Technology) diluted in the blocking solution 

for overnight at 4℃. The sections were followed by incu-
bation with horseradish peroxidase (HRP)-conjugated 
goat anti-rabbit immunoglobulin antibody (P0448; Dako) 
diluted at 1:100 for 1 h at RT. Positive area were visual-
ized by treating the sections with 3,3-diaminobenzi-
dine tetrahydrochloride. Finally, after counterstaining 
with Mayer’s hematoxylin, the sections were dehydrated 
and mounted. For all specimens, negative controls were 
prepared following the same protocol without primary 
antibody.

Histological analysis
Positive area of type 1 collagen immunostaining was eval-
uated by ImageJ software. Three or four different regions 
of each anterior neck muscle sample were randomly 
selected at 400X magnification with microscope (Digi-
tal Sight 10, Nikon, Tokyo, Japan). Positive area of Type1 
collagen was evaluated as the number of pixels by ImageJ, 
and the results were expressed as a mean of each sample.

Statistical analysis
All experiments were performed in triplicate, and the 
results were normalized to those of the sham control 
group. Data are presented as mean ± standard error of 
the mean (SEM). Statistical analysis was performed using 
GraphPad Prism 9 (GraphPad Software, Inc, San Diego, 
CA, USA). Normality (Kolmogorov–Smirnov test) and 
equality of variance (Bartlett’s test) were confirmed for 
all the data. Those data considered to be normally dis-
tributed and with homogeneous variance were further 
assessed by one-way analysis of variance (ANOVA) with 
post-hoc Tukey for multiple comparison. For subgroup 
that was normally distributed but did not pass equal vari-
ance test, Welch’s ANOVA was used followed by Dun-
nett’s multiple comparison. For data was not normal 
distributed, Kruskal–Wallis test with Dunn’s multiple 
comparison was used for non-parametric test. The differ-
ences were considered significant when P < 0.05.

Table 1  Primer sequence of the marker genes

Gene name Forward primers Reverse primers

Gapdh AGG​TCG​GTG​TGA​ACG​GAT​TTG​ TGT​AGA​CCA​TGA​GTT​GAG​GTCA​

Tnfa GCC​TCT​TCT​CAT​TCC​TGC​TTG​ CTG​ATG​AGA​GGG​AGG​CCA​TT

Ccl2 GAC​CTT​AGG​GCA​GAT​GCA​GT AGC​TGT​AGT​TTT​TGT​CAC​CAAGC​

Il1b CCT​TCC​AGG​ATG​AGG​ACA​TGA​ AAC​GTC​ACA​CAC​CAG​CAG​GTT​

Acta2(aSMA) ATT​GTG​CTG​GAC​TCT​GGA​GAT​GGT​ TGA​TGT​CAC​GGA​CAA​TCT​CAC​GCT​

Tgfb ACG​TCA​CTG​GAG​TTG​TAC​GG GGG​GCT​GAT​CCC​GTT​GAT​TT

Col1a1 GAG​CGG​AGA​GTA​CTG​GAT​CG TAC​TCG​AAC​GGG​AAT​CCA​TC
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Results
Experimental design of the cervical RIF mouse model
Mice exposed to a single dose of 24- or 72-Gy radia-
tion were sacrificed at 10  days, 1  month, or 3  months 
(Fig. 1A). At 1 month, mice exposed to 72-Gy radiation 
showed moderate skin inflammation, ulcers, and hair 
loss (upper right panel in Fig. 1A); at 3 months, the skin 
damage had recovered. The strap muscles were isolated 

at the indicated time points for gene expression and 
histological analyses (Fig. 1B).

Changes in inflammatory gene expression after irradiation
To determine the changes in expression levels of pro-
inflammatory markers after 24- or 72-Gy radiation expo-
sure, the mRNA levels of TNF-α, CCL2, and IL-1β were 
determined (Figs.  2 and 3). There were no significant 
differences between mice exposed to 24-Gy radiation 

Fig. 2  Expression levels of pro-inflammatory genes compared to controls at 10 days, 1 month, and 3 months. Relative mRNA expression levels 
of TNF-α, CCL2, and IL-1β in mouse strap muscles exposed to radiation. Data are presented as mean ± s.e.m. *p < 0.05, **p < 0.01

Fig. 3  Expression levels of pro-inflammatory genes at 1 month in 24-Gy and 72-Gy radiation exposure groups. Relative mRNA expression levels 
of TNF-α, CCL2, and IL-1β in mouse strap muscles exposed to radiation. Data are presented as mean ± s.e.m. *p < 0.05, **p < 0.01
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and control mice (Fig. 2). The TNF-α expression level in 
strap muscles was significantly higher in mice exposed 
to 72-Gy radiation at 10  days (p < 0.01), but not at 1 or 
3  months, compared to control mice (Fig.  2). Inter-
estingly, the expression levels of CCL2 (p < 0.05) and 
IL-1β (p < 0.05) were significantly higher at 1  month 
after 72-Gy radiation exposure compared to the control 
group (Fig.  2), indicating time-dependent expression of 

inflammatory markers. At 1  month, a dose-dependent 
effect of irradiation on CCL2 and was observed, although 
the differences were only significant at 72-Gy exposure 
(Fig. 3).

Changes in fibrosis‑related genes after irradiation
We analyzed the expression levels of the fibrosis-related 
markers α-SMA, TGF-β1, and Col1a (Figs.  4 and 5). 

Fig. 4  Expression levels of fibrosis-related genes compared to controls at 10 days, 1 month, and 3 months. Relative mRNA expression levels 
of αSMA, TGF-β1, and Col1a in mouse strap muscles exposed to radiation. Data are presented as mean ± s.e.m. *p < 0.05, **p < 0.01

Fig. 5  Expression levels of fibrosis-related genes at 1 month in 24-Gy and 72-Gy radiation exposure groups. Relative mRNA expression levels 
of SMA, TGF-β1, and Col1a in mouse strap muscles exposed to radiation. Data are presented as mean ± s.e.m. *p < 0.05, **p < 0.01
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The α-SMA mRNA expression level was significantly 
higher at 10  days (p < 0.05) and 1  month (p < 0.05) after 
72-Gy irradiation compared to the non-irradiated strap 
muscles. In comparison, 72-Gy radiation significantly 
increased the expression levels of TGF-β1 (p < 0.05) and 
Col1a (p < 0.05) at 1  month. No significant differences 
were found in the α-SMA, TGF-β1, or Col1a mRNA lev-
els in the 24-Gy-irradiated strap muscles compared to 
the non-irradiated muscles. In line with the changes in 
inflammatory markers, a dose-dependent effect of irradi-
ation on the three fibrotic markers was observed (Fig. 5).

Histological and immunohistochemical analysis
We analyzed the histological changes with HE staining 
and immunohistochemistry using anti-Collagen type1 
antibody (Figs. 6 and 7). Non-irradiated muscle showed 
well-organized sarcomeres that aligned with muscle fib-
ers (Fig.  6B). Ten days post 72-Gy radiation muscle fib-
ers showed irregular muscle sarcomeres, which was 
characterized by enlarged nucleus and coarse chromatin 
structure compared to non-irradiated muscle (Fig.  6B, 
black arrowhead). One month post 72-Gy radiation mus-
cle fibers further showed vacuolization of muscle fibers 
(Fig. 6C, white arrowhead), and the these irregular mor-
phology was continuously observed in muscle 3 months 
post 72-Gy radiation (Fig. 6D, black arrow).

In addition, the results of immunohistochemistry 
showed that the deposition of type 1 collagen gradually 
increased in extracellular space after radiation exposure 

(Fig.  7A-D), and the positive area was significantly 
increased at 3 months compare to non-irradiated control 
(Fig. 7E).

Discussion
In HNC patients, cervical RIF leads to functional prob-
lems, including dysphonia, oropharyngeal dysphagia, and 
chronic aspiration [12, 13]. Chronic aspiration is a life-
threatening manifestation of dysphagia, affecting 30% of 
HNC survivors treated with irradiation [14]. RAD is not 
only caused by RIF of the cervical region (e.g., strap mus-
cles, intrinsic laryngeal musculature, recurrent laryngeal 
nerve, and lymphatics) [7, 9, 15] but also by sensory defi-
cits associated with cranial nerve neuropathies caused by 
radiation-induced hypoxia [8, 16]. Tedla et  al. [7] dem-
onstrated that swallowing dysfunction after irradiation is 
caused, at least partially, by a reduction in intrinsic laryn-
geal muscle mass and by changes in the laryngeal nerves 
in human models, which are involved in aspiration pre-
vention. Starmer et  al. [17] demonstrated that radiation 
dose to the geniohyoid rather than the constrictor mus-
cles was more closely related to swallowing. Johns et al. 
[18] demonstrated that irradiated human vocal folds 
exhibit increased collagen transcription, with increased 
collagen deposition and disorganization in both the 
intrinsic laryngeal muscle and the superficial lamina pro-
pria. Additionally, the mouse model of irradiated vocal 
fold exhibits similar findings to irradiated human vocal 

Fig. 6  Cross section of non-irradiated and irradiated mouse anterior neck muscle stained with HE staining. A Control. B 10 days post irradiation. C 
1 month post irradiation. D 3 months post irradiation
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folds and can be used to evaluate the mechanisms under-
lying radiation fibrosis.

RAD should be prevented to minimize the effects on 
the quality of life of HNC patients. Few effective treat-
ments are available for HNC patients with RAD, includ-
ing postural rehabilitation [10, 11] Krisciunas et  al. [10] 
demonstrated that SLPs provide Manual Therapy(MT) 
to HNC patients during and after cancer treatment, and 
that reported adverse events paralleled those experienced 
by noncancer patients. National Cancer institute-funded 
prospective single-arm pilot trial called Manual Therapy 
for Fibrosis-Related Late Effect Dysphagia (MANTLE) 
is going on, which is evaluating the feasibility, safety and 
therapeutic potential of MT in patients with late dyspha-
gia after radiotherapy for HNC [11]

An animal model is needed to evaluate the treat-
ments for oropharyngeal RAD. Multiple animal models 
of oropharyngeal dysphagia have been developed [19], 
although few models of RAD are available [20–22].

Fractionated RT is typically administered for HNC to 
reduce side effects; this RT technique is substantially 
different from single-dose irradiation, and animal mod-
els should be adjusted accordingly. In previous stud-
ies, around 40–60-Gy fractionated irradiation proved 
sufficient for the mylohyoid muscle, which induces 
functional and neuronal deficits in swallowing with-
out obvious weight loss in animals [23]. Saltman et al. 
[24] demonstrated that a fractionated dosing regimen 
was associated with lower weight loss, dehydration, and 

lethargy. Johns [18] demonstrated that a localized dos-
ing protocol based on a total dose of 15-Gy adminis-
tered as three 5-Gy doses at 2-week intervals prolonged 
the survival of animals compared to a full course of RT 
(15 treated animals vs. 15 controls). On the other hand, 
another study demonstrated the development of muscle 
fibrosis following administration of a single 40–90-Gy 
dose to hindlimbs [25]. Additionally, 75-Gy (15-Gy × 5 
fractions) of radiation delivered to the mandibular area 
was not lethal [26]. Based on the aforementioned stud-
ies, we administered a single radiation dose of 72-Gy. 
The cranial motor system (i.e., tongue and swallow-
ing-related muscles) have important differences from 
hindlimbs due to their different functions [27]. In the 
present study, we focused on the acute phase, but not 
the late phase, of radiation toxicity. Therefore, we used 
single-dose irradiation for the preliminary experiment, 
although multiple doses may better reflect the clinical 
situation. Two studies have shown that a single dose 
of 30- 80-Gy radiation induces skeletal muscle fibro-
sis in rats [28, 29]. Therefore, we used 24- and 72-Gy 
irradiation and observed the animals for 10  days and 
1  month and 3  months respectively, before evalua-
tion. Our results suggest that 72-Gy irradiation is more 
effective for inducing strap muscle inflammation and 
fibrosis compared to 24-Gy irradiation, as shown by the 
increased levels of inflammatory and fibrotic markers. 
King et  al. [30] developed a rat model involving expo-
sure of the submental muscle to 48-Gy fractionated 

Fig. 7  The expression of type 1 collogen in non-irradiated and irradiated mouse anterior neck muscle. Immunohistochemistry results of type 1 
collogen are shown in (A) Control, (B) 10 days post irradiation, (C) 1 month post irradiation, and (D) 3 months post irradiation. E The bar graph 
shows quantitative analysis. Y axis shows the pixels of type1 collagen-positive areas. Data are presented as mean ± s.e.m
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radiation exposure, where this muscle is involved in the 
oral rather than pharyngeal phase of swallowing. The 
irradiated mylohyoid muscle demonstrated upregu-
lated of TGF-β1, but not TNF-α or IL-1β, in the irradi-
ated mylohyoid muscle compared to the non-irradiated 
muscle at 1 month after radiation exposure. Therefore, 
radiation doses < 72-Gy may not induce complete fibro-
sis in the strap muscles. Furthermore, the expression 
levels of both inflammatory and fibrotic markers in the 
strap muscle were significantly increased at 1  month 
after 72-Gy irradiation, suggesting that the strap mus-
cles of the C57BL/6 mouse model may be sensitive to 
skeletal muscle and lung fibrosis, as reported previously 
[31].

The main mechanisms underlying radiation-induced 
skeletal muscles fibrosis involve DNA damage, inflam-
mation, muscle regeneration, and fibrosis [25]. After 
irradiation, multiple inflammatory cytokines, including 
TNF-α, IL-1, and IL-6 [28, 32], are released in the early 
acute phase due to DNA damage, cell apoptosis, and 
cell necrosis. In the present study, the pro-inflammatory 
cytokine TNF-α exhibited increased expression, which 
peaked at day 10 after 72-Gy radiation. In comparison, 
the expression levels of inflammatory cytokines related 
to immune cell recruitment, i.e., CCL2 and IL-1β, were 
significantly increased at 1  month after 72-Gy irradia-
tion. The time lag between changes in the expression lev-
els of TNF-α and the remaining two cytokines suggests 
a phase transition from acute tissue damage to immune 
cell infiltration, similar to the process of muscle recovery 
after exercise [33]. In addition, strict regulation of the 
interaction between immune cells and skeletal muscles 
is necessary to avoid muscle fibrosis [34, 35]. Our analy-
sis revealed significantly increased expression of fibrotic 
markers (α-SMA, TGF-β, and Col1a) and immunocyte 
recruitment markers at 1  month after 72-Gy irradia-
tion, indicating dysregulation of the interaction between 
immunocytes and muscle cells. This promotes strap 
muscles fibrosis, as evidenced by the deposition of type1 
collagen at a relatively late phase (3 months) after 72-Gy 
irradiation in our present study.

Finally, the expression levels of inflammatory and 
fibrotic markers start to decrease at 3 months compared 
to 1 month after irradiation, indicating the resolution of 
fibrosis and inflammation.

The present study evaluates pathological changes over 
time following radiation exposure, providing a mouse 
cervical RIF model to assess treatment strategies and out-
comes in terms of both inflammation and fibrosis.

Conclusions
A single dose of 72-Gy radiation can efficiently induce 
strap muscle inflammation and fibrosis in mice at 
1 month. This cervical RIF model can be used to establish 
an animal model for RAD in future studies.
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