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for IHD is the restoration of blood in the ischemic heart 
muscles either by surgery or pharmacological therapy [5]. 
The several available therapy methods that can restore 
blood flow are coronary artery bypass grafting (CABG), 
percutaneous coronary intervention (PCI), etc. However, 
abrupt reperfusion leads to myocardial ischemia/reper-
fusion injury (MIRI). MIRI causes more structural and 
dysfunctional damage to cardiomyocytes on resuming 
blood perfusion than before reperfusion. Also, the ris-
ing mortality rate occurs due to myocardial damage that 
emanates at the time of re-oxygenation of the ischemic 
myocardium [6]. Therefore, finding a novel therapeu-
tic strategy to prevent patients with a high risk of MIRI 
is quint essential [7]. Several animal studies and clinical 
trials have shown that a series of pretreatment meth-
ods account for the phenomena of ischemic tolerance. 

Background
Ischemic heart disease [IHD] is the most prevalent cause 
of mortality worldwide and accounts for a 2.3-fold rise 
in the incidence rate of IHD in India [1, 2]. IHD refers 
to occlusion due to atherosclerosis leading to the inad-
equate blood supply to the region of the heart or in a 
broad term, the heart is not getting enough blood and 
oxygen due to blockage of coronary arteries which trans-
ports blood to the myocardium [3]. IHD accounted for 
8.9 million deaths in the year 2019, attributed to 16% of 
total deaths globally [4]. The currently available treatment 
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However, among different pretreatment methods such 
as the pharmacological intervention of beta-blockers, 
antiplatelets drugs, angiotensin-converting enzyme 
(ACE) inhibitors, fibrinolytic, calcium channel blockers 
(CCB), nitrates, cholesterol-lowering agents, exercise, 
and hypoxia, ischemic pretreatment (IP) has been proved 
to be the effective protective mechanisms because of its 
application in the prevention of primary and secondary 
prophylaxis of IHD [7]. Additionally, the ischemic reper-
fusion area through surgical procedures or pharmaco-
logical treatment causes the oxygen rush in the ischemic 
area, subsequently leading to oxidative stress by the for-
mation of oxygen free radicals/ROS. Therefore, averting 
reperfusion damage is a pivotal way to overcome morbid-
ity of acute cardiac injury as discussed in Fig. 1 [8].

Flavonoids have the inherent capability to combat 
numerous human diseases [9]. On a global scale, the 
rising prevalence of overweight and obese individu-
als has led to a significant surge in concurrent medical 
conditions, underscoring the imperative for improved 
therapeutic approaches. The positive influence of flavo-
noids on obesity and associated ailments is attributable 
to their anti-inflammatory action [10]. Inflammation-
evoked reactions/responses significantly participate in 

the pathogenesis of several ailments such as diabetes, 
asthma, cardiovascular disorders, and cancer. The inflam-
matory cascade is a complex interaction involving the 
recruitment of various immune cells, driven by pro-
inflammatory triggers. These immune cells subsequently 
generate chemokines and pro-inflammatory cytokines 
that serve as chemo-attractants for lymphocytes, thereby 
activating adaptive immune response. Within the con-
text of this inflammatory cascade, the generation of oxy-
gen free radicals, reactive nitrogen species (RNS), and a 
diverse array of proteases ensues, each of which holds the 
potential to precipitate tissue damage, fibrogenesis, and 
cellular proliferation, broadly can contribute to the per-
petuation of chronic inflammation [11].

As inflammation already initiates during ischemic 
events, the subsequent reinstatement of blood circulation 
and oxygen supply amplifies the activation of inflamma-
tory signaling pathways. Ongoing research endeavours 
are dedicated to probing the inflammatory molecules 
and cascade involved in ischemic injury, with a particular 
focus on pivotal factors such as interleukins (IL), neutro-
phils, and inflammasomes (Fig. 2) [12]. Also, it has been 
demonstrated that consumption of flavonoids protects 
against incidences of IHD, suggesting that flavonoids may 
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Fig. 2 Mechanism involved in the damage from Myocardial Ischemia-reperfusion injury and the role of flavonoids at various point in different studies

 

Fig. 1 Surgical procedure followed to cause Myocardial Ischemia-Reperfusion Injury (MIRI) in in vivo models
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enhance tolerance to MIRI [8, 13]. The present review 
will provide insight into the preclinical studies towards 
the effectiveness of flavonoids in IR injury. These flavo-
noids have an effective role in cardioprotection and could 
be taken further to the clinics after well-designed clinical 
studies.

Main text
Myocardial ischemia is characterized by damaged myo-
cardial tissue. ROS causing severe myocardial cell damage 
has been demonstrated in the chick model of simulated 
IR injury in cardiomyocytes [14]. The reperfusion in 
the ischemic region of the heart paradoxically initiates 
myocardial injury characterized by myocardial apopto-
sis/ necrosis/ necroptosis and pyroptosis/ ferroptosis. 
Broadly, during reperfusion of ischemic myocardium, oxi-
dative stress, and ionic disturbance are primarily attrib-
uted to myocardial IR injury. During reperfusion, ionic 
disturbances and increased oxygen free radicals acti-
vate signaling pathways leading to cardiomyocyte death 
in severe cases [15]. This cell death releases damage-
associated molecular patterns (DAMPs), mitochondrial 
DNA fragmentation, high mobility group box 1 protein 
(HMGB1), ATP, and calcium. These DAMPS activate 
TLR9 and NLRP3-inflammasome formation, triggering 
inflammatory responses. Subsequently, nuclear factor-κB 
(NF-κB) and myeloid differentiation primary response 
gene 88 (MyD88) pathways get activated resulting in the 
release of inflammatory molecules like interleukin-1β 
(IL-1β), monocyte-chemoattractant protein 1 (MCP1), 
tumor necrosis factor (TNF), IL-6, and IL-18. Further-
more, activation of inflammasome augments secretion 
of IL-1β and IL-18 via cardiac fibroblasts, leading to 
apoptosis of cardiomyocytes by increased expression of 
caspase-1 known as pyroptosis. In addition, leukotriene 
B4 (LTB4), cytokine-induced neutrophil chemoattrac-
tant 1 (CINC-1), macrophage inflammatory protein-2α 
(MIP-2α), complement 5a, IL-8 and CXCL8 amplifies 
recruitment of neutrophils to infiltrate in damaged area 
after the onset of ischemia which further leads to over-
production of ROS and releases granular components 

composed of proteases and myeloperoxidase, to remove 
apoptotic bodies as well as necrotic debris.

Despite neutrophils, activated complement consti-
tuting 30 proteins and protein fragments also get infil-
trated at the reperfused area resulting in augmentation 
of inflammation and damage, derived by complement 
pathway [Fig.  2]. Further, monocyte recruitment occurs 
at the site of the reperfused area due to chemokines 
(MCP1) and complement fragments (C3a, C4a, and C5a). 
Importantly, monocytes arise from the bone marrow and 
are secreted in the bloodstream via 2 ways: (a) Ly6Chi 
monocytes are characterized by inflammatory activity, 
released in blood stream and peak after 3–4 days of post-
myocardial infarction. (b) Ly6Clow monocytes are char-
acterized by anti-inflammatory activity and peak on the 
7th day after myocardial infarction. The Ly6Chi mono-
cytes acts by removing debris through phagocytosis at 
the reperfused damaged area. In addition, monocytes 
(Ly6Chi) differentiate into M1-type macrophages, charac-
terized by phagocytic activity, and produce ROS, result-
ing in enhanced inflammation. Later, Ly6Clow monocytes 
start infiltrating in the reperfused damaged region and 
M1-type macrophages differentiate into M2-type mac-
rophages resulting in suppression of T-cell activation by 
secreting TGF-β and IL-10. In addition, TGF-β functions 
in tissue remodelling and vascularization. Moreover, 
Th1-inducing factors prevent a shift of M1 to an M2-type 
of macrophages thus reducing the healing potential of 
chronic myocardial. Thereby, IR injury emanates into two 
phases: acute and delayed phase. During the acute phase, 
oxidative stress is primarily generated through the mito-
chondrial electron transport chain (ETC) and xanthine 
oxidase pathway. Inflammatory reactions occur due to 
cytokines from damaged cells leading to enhanced ROS 
levels, later during the delayed phase [16]. At each phase 
during the pathophysiology of IHD, flavonoids could be 
used for the amelioration of ischemic reperfused tissue.

Flavonoids are polyphenolic compounds naturally 
found in plant sources including vegetables and fruits. 
Several preclinical studies have evidenced the antioxi-
dant activity of these compounds by in vitro and in vivo 
models of oxidative stress. Also, clinical studies have 
demonstrated the consumption of flavonoids from fruits, 
vegetables, and tea at recommended doses decreases the 
incidence of IHD [17, 18].

Classifications of flavonoids
Over 4000 different flavonoid compounds have been 
identified from plants. These flavonoid compounds based 
on their chemical structure are categorised into flavonols, 
flavones, isoflavones, flavanones, and flavanonols as given 
in Table  1. Phenol benzopyrone skeleton (C6-C3-C6) 
remains the common entity between these groups.

Table 1 Different Chemical Class of flavonoids, constituents and 
its sources
Chemical 
Class

Constituents Common Plant Source

Flavanols Catechin, Gallo catechin Tea, Apple
Flavanol Quercetin, Myricetin, Kaem-

pherol, Rutin
Tea, Apple, Red wine, 
Tomato, Onion and 
Cherry

Flavones Apigenin, Chrysin, Luteolin Parsley and Thyme
Isoflavones Genistein, Formononetin, 

Daidzein, Glycitein
Soya bean and other 
Legumes

Flavanones Hesperidin, Narigenin Oranges and Grapefruit
Flavanonols Taxifolin Lemon and Sour orange
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Mechanisms associated with flavonoids in the prevention 
of IR injury
Free radicle scavenging and antioxidant activity
Previous studies have reported that flavonoids exhibit 
ROS-scavenging properties, and reduce oxidative dam-
age during myocardial IR injury. Flavonoids also scavenge 
peroxy-nitrite, superoxide, and peroxide radicals. Despite 
this, flavonoids prevent the Fenton reaction by forming 
complexes with iron [19]. Fanton reaction is an advanced 
oxidation process (AOP) that decomposes hydrogen per-
oxide using iron and generates hydroxyl ions [20]. Xan-
thine oxidase and NADPH oxidase play vital role in the 
generation of oxygen free radical. Many flavonoids such 
as apigenin, luteolin, quercetin, kaempferol, and myric-
etin, have been demonstrated to impede these oxidases 
and subsequently inhibit the production of ROS [21].

Chelation of transition metals
Flavonoids have been shown to chelate iron and copper 
which plays an important role in free radical generation. 
Chelation of iron leads to the prevention of free radical 
generation by the Fenton reaction [22].

Effect on myocardial apoptosis
Several preclinical studies have demonstrated that flavo-
noids have a role in cardio protection by depleting pro-
apoptotic factors (BAX, BAD, and BID), and cytosolic 
proteases including caspase-3, caspase-8 and caspase-9. 
Moreover, flavonoids like fisetin, kaempferol, mangiferin, 

hesperidin, naringenin, baicalein, genistein, luteolin, 
morin, nobiletin, quercetin, etc. act by inhibiting cyto-
plasmic proteases.

Anti-inflammatory activity
Several flavonoids possess anti-inflammatory and anti-
aggregatory properties. Studies revealed that the flavo-
noids inhibit matrix metalloproteinases (MMPs), which 
participate in tissue remodelling by degrading extracel-
lular matrix components. The increased plasma levels of 
MMPs have been reported during myocardial IR injury 
[23]. Flavonoids such as fisetin, kaempferol, baicalein, 
diadzein, genistein, luteolin, morin, and quercetin work 
by suppressing the activation of NF-κB leading to inhi-
bition of pro-inflammatory cytokines (IL-6 and TNF-α). 
Furthermore, myocardial IR injury leads to acute inflam-
mation in the myocardium where neutrophils infiltrate 
and subsequently progress the myocardium injury. Flavo-
noids have been demonstrated to protect against myocar-
dial IR injury by inhibiting pro-inflammatory cytokines 
(IL-6, IFN-γ, and TNF-α). Several evidences have shown 
that flavonoids act as an anti-inflammatory via inhibit-
ing activation of the NF-κB and AP-1 transcription fac-
tors [23]. The targeted molecular pathway of flavonoids is 
explained in Fig. 3.

Fig. 3 Key Molecular pathways involved and studied to investigate the effect of flavonoid in myocardial ischemia-reperfusion injury (MIRI) in vitro, in vivo, 
and ex vivo models of myocardial Infarction

 



Page 6 of 15Verma et al. Laboratory Animal Research           (2024) 40:32 

Flavonoids and molecular pathways associated with the 
prevention and therapeutics of myocardial IR injury
Fisetin (3,3,4,7-Tetrahydroxyflavone) is a flavone isolated 
from vegetables and fruits. An ex vivo study on an iso-
lated rat heart showed that a fisetin dose of 20 mg/kg by 
intraperitoneal route significantly decreases myocardial 
IR injury by its antioxidant activity and downregulating 
glycogen synthase kinase 3 beta (GSK-3B) [24]. Further-
more, an in vitro study conducted on H9c2 cardiocytes 
reported that fisetin treatment at a concentration of 15 
µM stimulates the viability of cardiomyocytes, inhibits 
apoptosis, and activates cytosolic caspases (caspase 3, 
8, and 9), reduces the generation of ROS and protects 
from DNA damage [25]. An in vivo study demonstrated 
that fisetin at a dose of 10 mg/kg and 20 mg/kg protects 
against myocardial IR injury by downregulating RAGE 
and NF-κB levels [26].

Kaempferol (3,5,7-Trihydroxy-2-(4-hydroxyphe-
nyl)-4  H-1-benzopyran-4-one) is a flavanol and isolated 
from various plants such as Witch-hazel, Delphinium, 
and grapefruit [27]. Several preclinical studies have 
demonstrated that kaempferol treatment significantly 
protects against myocardial IR injury via reducing apop-
tosis, GSK-3 beta activity and inhibiting the expressions 
of endoplasmic reticulum (ER) stress proteins [28–30]. 
Numerous in vitro studies reported that kaempferol 
treatment attenuates myocardial IR injury by reduc-
ing pro-inflammatory cytokines (IL-1β, IL-6, and TNF-
α), and by inhibiting pro-apoptotic proteins (Bax & 
caspase-3) and stimulating expression of anti-apoptotic 
protein Bcl-2 [31, 32].

Mangiferin (1,3,6,7-Tetrahydroxyxanthone-C2-β-
D-glucoside) C-glucosyl xanthone) is found in leaves, 
stem bark, fruit peels, and roots of Mangifera indica 
(mango) with antioxidant, and antidiabetic activity 
[33]. Numerous studies have revealed that treatment 
with mangiferin protects from IR injury by reducing 
the phosphorylation of p38 and JNK and increasing the 
phosphorylation of ERK 1/2. Mangiferin treatment also 
reduces and increases the expression of pro-apoptotic 
and anti-apoptotic proteins respectively. [34–36].

Hesperidin (30, 5, 9-Dihydroxy-40-methoxy-7-Orutin-
osyl) is a flavanone extracted from citrus fruits, and has 
anti-inflammatory, antioxidant, and anticancer proper-
ties. Plethora of preclinical data reported that hesperidin 
improves myocardial IR injury by decreasing the plasma 
levels of oxidative stress and pro-inflammatory cytokines 
[37–40]. Other preclinical studies reported that hesperi-
din play a role in cardioprotection by inhibiting HMGB1 
and activating PI3K/AKT pathways [41, 42].

Naringenin (4,5,7-Trihydroxy flavanone) is a flavanone 
found in citrus fruits, and characterized by antioxidant, 
anti-inflammatory, anti-apoptosis, and anticancer prop-
erties. Several in vitro and ex vivo studies revealed that 

naringenin attenuates myocardial IR injury by inhibiting 
mitochondrial oxidative stress and endoplasmic reticu-
lum (ER) stress [43–46].

Catechin (flavan-3-ol) is a bioactive polyphenol found 
in green tea and characterized by antioxidant, antion-
cogenic, and antiviral properties. A study reported that 
baicalin protects against myocardial IR injury when given 
just after reperfusion [47]. Another in vitro by Cong and 
his co-workers showed that treatment with catechin aug-
ments mitochondrial function and reduces apoptosis by 
encouraging activation of Akt / Gsk-3β [48]. Recently, a 
meta-analysis study demonstrated that epigallocatechin 
gallate (EGCG) significantly alleviates oxidative stress, 
myocardial injury enzyme, and cardiac function in myo-
cardial IR injury animal models [49].

Daidzein (7,4′-Dihydroxyisoflavone) is a phenolic 
compound that belongs to the phytoestrogens class and 
is found in soybeans & soy products and plants such as 
the Thai Kwao Krua [50]. A preclinical study conducted 
on an animal model of IR by Kim et al., in 2009 reported 
that daidzein depletes the plasma levels of TNF-α, IL-6, 
myeloperoxidase, catalase activity along with reduced 
malondialdehyde levels. Also, it inhibits myocardial 
apoptosis via reducing DNA strand breaks, and caspase-3 
activity, along with downregulation of activated NF-κB 
transcription factor [51]. Moreover, it has been demon-
strated to attenuate doxorubicin-induced cardiac injury 
via impeding apoptosis and autophagy [52]. A previous 
study by Shu et al. reported that daidzein decreases the 
activation of TGF-β1-induced cardiac fibroblast by TGF-
β1/ SMAD2/3 signaling pathways [53].

Genistein (4′,5,7-Trihydroxyisoflavone) is a polyphe-
nolic isoflavone and is extracted from dietary vegetables, 
such as fava beans and soybeans. Several preclinical stud-
ies have reported that genistein attenuate myocardial IR 
injury by decreasing myocardial apoptosis (lower Bcl2/ 
Bax ratio and Bax expression) and necrosis. Apart from 
this, genistein also reduces the pro-inflammatory cyto-
kines such as IL-6, IL-8, IL-10, and TNF-𝛼 as evidenced 
from the previous studies [54, 55].

Luteolin (3′,4′,5,7-Tetrahydroxyflavone) is a flavone, 
isolated from leaves and rinds, ragweed pollen, broccoli, 
pepper, thyme, celery, and barks [56]. Primitive studies 
reported that luteolin ameliorates myocardial IR injury 
through reduced myocardial necrosis and apoptosis [57]. 
It has been shown that luteolin acts by upregulating and 
downregulating the expression of anti-apoptotic protein 
(Bcl-2) and pro-apoptotic protein (BAX) respectively. 
Preclinical studies showed that the anti-apoptotic and 
anti-inflammatory properties of luteolin play a vital role 
in the improvement of myocardial IR injury [58, 59]. Fur-
thermore, previous studies have demonstrated the inhibi-
tory effect of luteolin on IR injury-induced SERCA2a 
activity [57, 60, 61].
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Morin (2′,3,4′,5,7-Pentahydroxyflavone) is a natural 
polyphenol and is extracted from stems, branches, leaves, 
and fruits of different plants. An in vitro study demon-
strated that morin ameliorates myocardial IR injury via 
its anti-apoptotic activity and by impeding the opening of 
myocardial mitochondrial permeability transition pores 
(MPTP) [62]. Morin functions via decreasing cytosolic 
caspase-3 & Bax and augmenting the anti-apoptotic pro-
tein levels (Bcl-2). Moreover, it also reduces myocardial 
inflammation by regulating inflammatory mediators such 
as TNF-α, IKKβ, NFκB, and IL-6) in the myocardium 
[62–64].

Nobiletin (O-methylated flavone) is a flavonoid found 
in citrus peels. An in vitro study reported that nobile-
tin improves myocardial IR injury by downregulating 
pro-inflammatory cytokines levels involving TNF-α, 
IL-6, IL-1β, and MDA levels [65]. In addition, nobiletin 
reduces the Bcl-2 level while increasing the Bax and cas-
pase − 3 levels. Effects of nobiletin in cardiomyocytes 
were shown to be accomplished by stimulating the Akt/
GSK-3β pathway. A preclinical study reported that nobi-
letin improves myocardial IR injury by upregulating 
p-PI3K & p-AKT levels [66, 67].

Quercetin (3,5,7,3’,4’-Pentahydroxyflavone) is a poly-
phenolic compound found in onions, berries, grapes, 
broccoli, cherries, and citrus fruits and comprises dif-
ferent biological activities including antioxidant, anti-
coagulant, and anti-inflammatory activities [68, 69]. 
Various studies have demonstrated the role of quer-
cetin in improving myocardial IR injury by stimulat-
ing the PI3K/Akt signaling pathway, and peroxisome 
proliferator–activated receptor gamma (PPAR-γ). Also, 
evidence from in vitro study have proved that querce-
tin improved myocardial IR injury by reducing the pro-
inflammatory cytokines (IL-10 and TNF-α) [70]. A study 
showed quercetin in combination with cinnamaldehyde 
improves inflammation, myocardial infarction, and apop-
tosis in isoproterenol-induced rats via cleaved caspase-3 

signaling, NF-κB, and P65 molecules [71]. Various pre-
clinical studies evaluated the potent role of flavonoids in 
the prevention and therapeutics of IR injury along with 
doses used and results obtained are summarized sepa-
rately for in vivo (Table 2), ex vivo (Table 3), and in vitro 
(Table 4).

Conclusion
Multiple preclinical studies have demonstrated and pro-
vided evidence for cardio-protective applications of fla-
vonoids in attenuating myocardial IR injury, and also 
shown their role in pleiotropic pathways such as the 
inherent ability to ameliorate oxidative stress, inhibit 
apoptosis, and reduce inflammation. The antioxidant 
activity is influenced by increasing levels of glutathione 
and by decreasing levels of superoxide dismutase and 
malondialdehyde. Moreover, the anti-inflammatory role 
of flavonoids is governed by downregulating transcrip-
tion of NF-κB subsequently inhibiting the generation of 
various pro-inflammatory cytokines (IL-6, IL-1β, and 
TNF-α). In addition, the anti-apoptotic activity of flavo-
noids is accomplished by inhibiting cytosolic proteases 
including caspase-3, caspase-8, and caspase-9.

Even though numerous preclinical studies have evi-
denced the potent characteristics of flavonoids in the 
amelioration of IR injury, a comprehensive assessment 
of their dosages and potential adverse effects is essen-
tial before any recommended therapeutic utilization. 
Furthermore, given the pivotal role that flavonoids play, 
there is a pressing imperative to explore novel reser-
voirs of these bioactive compounds. Diverse botanical 
specimens historically utilized in Ayurveda, Siddha, and 
Unani medicinal traditions are replete with flavonoids, 
thus warranting deliberate investigation for their extrac-
tion. Thus, there is a dire need for clinical studies for the 
extensive exploration of flavonoids for their potential role 
in myocardium protection.
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Abbreviations
8-OHdG  8-hydroxy-2’ -deoxyguanosine
APAF  Apoptotic protease activating factor
ASC  Apoptosis-associated speck-like protein containing CARD
AST  Aspartate transaminase
BAX  Bcl-2–associated X protein
Bcl-2  B-cell lymphoma 2
CK-MB  Creatine Kinase-Myocardial Band
CPK  Creatine phosphokinase
CREB  Cyclic-AMP response-binding protein
cTnI  Cardiac troponin I
DHE  Dihydroethidium
ERK  Extracellular signal-regulated kinase
GPx  Glutathione peroxidase
GR  Glutathione reductase
GSH  Reduced glutathione
GSK  Glycogen synthase kinase
HR  Heart Rate
IHD  Ischemic Heart Disease
IKKα  Inhibitory Kappa B Kinaseα
IL  Interleukin
IR  Ischemia Reperfusion
IRE1α  Inositol-requiring transmembrane kinase/endoribonuclease 1α
LDH  Lactate Dehydrogenase
LV dp/dt  Rate of change in left ventricular pressure
LVEDP  Left ventricular end diastolic pressure
LVF  Left Ventricular Function
MDA  Malonaldehyde
MIAT  Myocardial infarction associated transcript
MIRI  Myocardial Ischemia-Reperfusion Injury
MPO  Myeloperoxidase
NLRP3  NLR family pyrin domain containing 3
NO  Nitric oxide
Pre-op  Pre operation / before surgery
RAGE  Receptor of advanced glycation end-products
ROS  Reactive Oxygen Species
SOD  Super Oxide Dismutase
TBRAS  Thiobarbituric acid reactive substance
TLR  Toll-like receptor
TNF  Tumour Necrosis Factor
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