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Sirtuin-2 inhibition affects hippocampal functions and sodium 
butyrate ameliorates the reduction in novel object memory,

cell proliferation, and neuroblast differentiation
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We investigated the effects of the sirtuin-2 (SIRT2) inhibitor AK-7 on novel object memory, cell proliferation,
and neuroblast differentiation in the dentate gyrus. In addition, we also observed the relationships with
sodium butyrate, a histone deacetylase inhibitor, on the hippocampal functions. To investigate the effects
of AK-7 on hippocampal functions, 10-week-old C57BL/6 mice were daily injected intraperitoneally with
20 mg/kg AK-7 alone or in combination with subcutaneous administration of 300 mg/kg sodium butyrate,
a histone deacetylase inhibitor, for 21 days. A novel object recognition test was conducted on days 20
(training) and 21 (testing) of treatment. Thereafter, the animals were sacrificed for immunohistochemistry
for Ki67 (cell proliferation) and doublecortin (DCX, neuroblast differentiation). AK-7 administration
significantly reduced the time spent exploring new objects, while treatment in combination with sodium
butyrate significantly alleviated this reduction. Additionally, AK-7 administration significantly reduced the
number of Ki67-positive cells and DCX-immunoreactive neuroblasts in the dentate gyrus, while the
treatment in combination with sodium butyrate ameliorated these changes. This result suggests that the
reduction of SIRT2 may be closely related to age-related phenotypes including novel object memory, as
well as cell proliferation and neuroblast differentiation in the dentate gyrus. In addition, sodium butyrate
reverses SIRT2-related age phenotypes.
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Histone acetylation and deacetylation is one of the

important factors in the modulation of learning and

memory, and of synaptic plasticity by histone deacetylases

(HDACs, EC 3.5.1.98) [1-3]. HDAC proteins are

grouped into four classes, of which class III consists of

sirtuins (SIRTs), a family of NAD+-dependent proteins.

Among SIRTs, SIRT2 is mainly found in the brain [4-6]

and has been shown to be associated with the aging

process and age-related neurodegeneration [4,6-8]. Several

lines of evidence indicate that SIRT2 inhibition facilitates

neurite outgrowth in vitro and enhances neuroprotection

in Parkinson’s and Huntington’s diseases [9-12].

However, Yuan et al. [13] recently found that SIRT2

inhibition accelerates neuronal damage in a model of
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traumatic brain injury. In addition, Chen et al. [14] found

no effect of SIRT2 inhibition on brain injury such as

amyotrophic lateral sclerosis and ischemic stroke. SIRT2

is closely related to AKT pathway in insulin as well as

growth factor-responsive cells [15], and insulin receptor

and growth factor receptors are highly expressed in the

hippocampus [16,17]. In contrast, HDAC inhibitors

manipulate the epigenome and affects the expression of

only 2% of mammalian genes [18]. In addition, HDAC

inhibitors are essential agent for determining the role of

histone acetylation in chromatin structure and function.

Pharmacological inhibition by sodium butyrate, trichostatin

A, or valproic acid show memory enhancement [19,20]

and increase the hippocampal neurogenesis [21-26].

The hippocampus plays an important role in spatial

memory and navigation. Newly generated cells in the

subgranular zone of the dentate gyrus migrate into the

granule cell layer and finally integrate as new neurons in

the hippocampus in a lifelong process. Newly born neurons

have a critical role in mediating pattern separation in

memory formation and cognition in rodents [27-29]. It is

generally accepted that neurogenesis decreases with age

[30,31], but there are contradictory results with regard to

SIRT2 expression in the brain. Braidy et al. [32] found

that SIRT2 expression level was unrelated to age in the

hippocampus of Wistar rats, while Kireev et al. [33]

found a SIRT2 expression decrease in the dentate gyrus

of old rats. In a previous study, we demonstrated that

SIRT2 administration affects hippocampal functions such

as memory formation, cell proliferation, and neuroblast

differentiation [21].

In the present study, we investigated the effects of AK-

7, a selective cell- and brain-permeable SIRT2 inhibitor

[34] on novel object recognition memory, and on

neurogenesis including cell proliferation and neuroblast

differentiation in the dentate gyrus. We also looked at the

relationship of AK-7 with sodium butyrate.

Materials and Methods

Experimental animals

Male C57BL/6 mice were purchased from Japan SLC

Inc. (Shizuoka, Japan). They were housed in a conventional

state under adequate temperature (23ºC) and humidity

(60%), controlled with a 12 h light/12 h dark cycle, and

could freely access food and tap water. The handling and

caring of the animals conformed to the guidelines

established in order to comply with current international

laws and policies (NIH Guide for the Care and Use of

Laboratory Animals, NIH Publication No. 85-23, 1985,

revised 1996), and were approved by the Institutional

Animal Care and Use Committee (IACUC) of Seoul

National University (Approval number: SNU-140404-

5). All of the experiments were conducted with an effort

to minimize the number of animals used and the

suffering caused by the procedures used in the present

study.

AK-7 treatment with or without sodium butyrate

AK-7 and sodium butyrate were purchased from Tocris

Bioscience (Bristol, UK) and Sigma (St. Louis, MO,

USA), respectively. The animals were divided into 3

groups (n=7 in each group): 1) vehicle-treated group

(control), 2) AK-7-treated group without sodium butyrate

(AK-7 group), and 3) AK-7-treated group with sodium

butyrate (AK-7+SB group). Treatments were performed

daily in 10-week-old mice for 3 weeks. AK-7 (20 mg/

kg) was injected intraperitoneally and sodium butyrate

(300 mg/kg) was administered subcutaneously because

doublecortin (DCX) is exclusively expressed in immature

neurons from 1 to 28 days of cell age [35,36]. The

concentration of AK-7 (20 mg/kg) was chosen because

it was found to attenuate dopamine loss induced by 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the striatum

in the subacute paradigm [14]. In addition, the concentration

of sodium butyrate (300 mg/kg) was selected as previous

studies found that this dosage increases cell proliferation

and neuroblast differentiation [21-23].

Novel object recognition test

The test was performed in an acrylic box with three

opaque walls and one transparent wall (45×45×30 cm).

At day 20 of treatment, and 1 h after administration, the

mice were placed in an open field and allowed to explore

two identical objects for 5 min each and repeated once.

Twenty-four hours after the open-field trial, one of the

two familiar objects was replaced by a new one, and the

mice were allowed to explore them for 5 min. In all

experiments, relative exploration time was calculated as

follows: relative exploration time in first and second day

trials=100×[time observed each object (familiar or new)

/time observing both objects]. The animals were sacrificed

2 h after the novel object recognition test.

Tissue processing

For histology, the animals from the control, AK-7, and
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AK-7+SB groups were anesthetized with 2mg/kg urethane

(Sigma) and perfused transcardially with 0.1 M of

phosphate-buffered saline (PBS, pH 7.4) followed by

4% paraformaldehyde in 0.1 M phosphate-buffer (pH

7.4). Brains were removed and post-fixed in a fixative

for 12 h. Brain tissues were cryoprotected by infiltration

with 30% sucrose overnight. Brain sections of 30-µm

thickness were serially cut in the coronal plane using a

cryostat (Leica, Wetzlar, Germany). Sections were collected

in six-well plates containing PBS until further processing.

Immunohistochemistry

In order to obtain accurate data for immunohisto-

chemistry, free-floating sections were carefully processed

under the same conditions. For each animal, tissue sections

were selected between 1.46 and 2.46 mm posterior to

bregma by referring to the mouse atlas by Franklin and

Paxinos [37]. Ten sections, 90 µm apart from each other,

and were sequentially treated with 0.3% hydrogen peroxide

in PBS and 10% normal horse serum in 0.05 M PBS.

They were then incubated overnight with diluted rabbit

anti-Ki67 antibody (1:1,000; Abcam, Cambridge, UK)

or goat anti-DCX antibody (1:50; Santa Cruz Biotechnology,

Santa Cruz, CA, USA), and subsequently exposed to

biotinylated horse anti-goat, or anti-rabbit IgG (diluted

1:200; Vector, Burlingame, CA, USA) and streptavidin

peroxidase complex (diluted 1:200, Vector). Then, the

sections were visualized by reaction with 3,3'-diamino-

benzidine tetrahydrochloride (Sigma).

Ki67-, and DCX-positive cell counts were performed

for each section of the dentate gyrus using an image

analysis system equipped with a computer-based CCD

camera (software: Optimas 6.5, CyberMetrics, Scottsdale,

AZ, USA). Cell counts from all of the sections of all of

the mice were averaged.

Statistical analysis

The data shown here represent the means±SEM.

Differences among means were statistically analyzed by

one-way ANOVA test, followed by Bonferroni post-hoc

tests, in order to elucidate the effects of AK-7 with or

without sodium butyrate on novel object recognition,

cell proliferation, and neuroblast differentiation in mice.

Statistical significance was considered at P<0.05.

Results

Effects of AK-7, with or without sodium butyrate, on

object recognition

During the training period, control, AK-7, and AK-

7+SB mice showed similar behavior, including similar

spending of time exploring the two identical objects.

During the test period, control mice spent more time

exploring the new object than the familiar one, and the

relative exploration time (67.52%) was significantly

increased in this group compared to that in the control

group spending time to identical objects (P<0.01).

However, AK-7 mice spent less time exploring the new

object compared to those in the control group, and the

relative exploration time (57.01%) was not significantly

different between familiar and new objects (P>0.05).

AK-7+SB mice spent more time exploring the new

Figure 1. Effect of AK-7, with and without sodium butyrate, on exploration time of familiar vs. new objects in the novel object
recognition test in mice (n=7 per group; *P<0.05, versus familiar object). Data for time of exploration for each object (same one,
where one object was replaced by new one on the testing day) are presented as percentage of total exploration time. All data are
shown as % exploration time±SEM.



Effects of SIRT2 inhibition on neurogenesis 227

Lab Anim Res | December, 2016 | Vol. 32, No. 4

object, and relative exploration time (63.06%) was also

significantly larger than that for the AK-7 mice (P<0.05,

Figure 1).

Effects of AK-7, with or without sodium butyrate, on

cell proliferation

In the control group, Ki67-positive nuclei were mainly

detected in the subgranular zone of the dentate gyrus

(Figure 2A) and the average number of Ki67-positive

nuclei was 16.9 per section (Figure 2D). In the AK-7

group, a few Ki67-positive nuclei were observed in the

dentate gyrus (Figure 2B), and the number of Ki67-

positive nuclei was significantly decreased to 40.2% of

the control group’s (Figure 2D). In the AK-7+SB group,

Ki67-positive nuclei were abundant in the dentate gyrus

compared to the AK-7 group (Figure 2C), and the

number of Ki67-positive nuclei was 71.0% of the control

group’s (Figure 2D).

Effects of AK-7, with or without sodium butyrate, on

neuroblast differentiation

In the control group, DCX-immunoreactive neuroblasts

were abundantly detected in the subgranular zone of the

dentate gyrus (Figure 3A). In this group, DCX-immuno-

reactive neuroblast count was 131.4 per section (Figure

3D). In the AK-7 group, DCX-positive neuroblast count

was significantly lower in the dentate gyrus to 47.0% of

the control group’s (Figure 3B, 3D). In the AK-7+SB

group, DCX-immunoreactive neuroblasts were abundant

in the dentate gyrus compared to the AK-7 group, and

the number of DCX-immunoreactive neuroblasts was

81.3% of the control group’s (Figure 3C, 3D).

Discussion

In a previous study [21], we demonstrated that the

overexpression of SIRT by the PEP-1-SIRT2 fusion

protein significantly causes memory deficits and reduces

cell proliferation and neuroblast differentiation in the

dentate gyrus. In addition, other researchers have shown

that overexpression of SIRT2 inhibits neurite elongation

[12] and SIRT2 knockdown enhances neurite outgrowth.

In the present study, we investigated the effects of AK-

7, a selective SIRT2 inhibitor permeable to the blood-

Figure 2. Immunohistochemistry for Ki67 in the dentate gyrus in vehicle-treated (control, A), AK-7-treated (B) and AK-7-treated with
sodium butyrate (AK-7+SB, C) mouse groups. In the control group, Ki67-positive nuclei are detected in the subgranular zone of the
dentate gyrus. Note that Ki67-positive nuclei are relatively few in the AK-7 group and are restored in the AK-7+SB group. GCL,
granule cell layer; ML, molecular layer; PL, polymorphic layer. Scale bar=50 µm. (D) Number of Ki67-positive nuclei per section for
each group (n=7 per group; *P<0.05, versus control group; †P<0.05, versus AK-7 group). Data are presented as mean±SEM.
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brain barrier (BBB), on behavioral changes based on

novel object recognition tests and neurogenesis based on

cell proliferation and neuroblast differentiation. SIRT2

inhibition by AK-7 surprisingly also induced memory

impairment and reduced neurogenesis as does SIRT2

overexpression. This result is supported by Liu et al. [38]

who showed that SIRT2 inhibition by tenovin-D3 causes

depression-like behavior and reduces the number of 5-

bromo-2'-deoxyuridine (BrdU)-positive cells in the dentate

gyrus of rats, while overexpression of SIRT2 by adenovirus

significantly increases the BrdU-positive cells in the rat

dentate gyrus [38]. Three-week long repeated treatment

with MC1568, a histone deacetylase inhibitor, and 33i,

a SIRT2 inhibitor, increased synaptic plasticity in the

prefrontal cortex [39].

Results regarding SIRT2 function in the brain are

contradictory. It has been reported that overexpression of

SIRT2 decreases the survival of healthy neurons [40].

Conversely, SIRT2 inhibition prevents neuronal death

from Parkinson’s [11,14] and Huntington’s [41] diseases.

However, SIRT2 inhibition has no effects on amyotrophic

lateral sclerosis and ischemic stroke [14]. Knockdown of

SIRT increases microglial activation and pro-inflammatory

cytokines upon intra-cortical injection of lipopolysaccharide

in mice [42]. In addition, inhibition of SIRT2 by AK-7

accelerates injury, BBB disruption, and microglial

activation after controlled cortical impact [13]. A recent

paper demonstrates molecular mechanisms of SIRT2 on

the hippocampal neurogenesis, which is closely related

to AKT pathway in insulin and growth factor-responsive

cells [15]. Down-regulation of SIRT2 decreases AKT

activation in insulin and growth factor-responsive cells,

while overexpression of SIRT2 enhances the activation

of AKT and its down-stream targets [15]. Collectively,

these results suggest that the adequate levels of SIRT2

may be important to regulate the proliferation and

differentiation of newly generated cells in the subgranular

zone of the dentate gyrus.

The modulation of histone acetylation and deacetylation

is critical for hippocampus-dependent object memory

consolidation [2,43,44]. In the present study, we

investigated the effects of sodium butyrate on AK-7-

Figure 3. Immunohistochemistry for DCX in the dentate gyrus in vehicle-treated (control, A), AK-7-treated (B) and AK-7-treated
with sodium butyrate (AK-7+SB, C) mouse groups. In the control group, DCX-immunoreactive neuroblasts are abundantly
observed in the subgranular zone. Note that there are relatively few DCX-immunoreactive neuroblasts in the AK-7 group, and the
reduction of DCX-immunoreactive neuroblasts is alleviated in the AK-7+SB group. GCL, granule cell layer; ML, molecular layer; PL,
polymorphic layer. Scale bar=50 µm. (D) Number of DCX-immunoreactive neuroblasts per section for each group (n=7 per group;
*P<0.05, versus control group; †P<0.05, versus AK-7 group). Data are presented as mean±SEM.
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induced reduction in novel object recognition memory

and neurogenesis. In the previous studies, we and other

groups demonstrated that sodium butyrate alters histone

acetylation in the hippocampus [23,45] and administration

of sodium butyrate significantly increases the neuro-

genesis in the dentate gyrus of adult brain [21-26]. In the

present study, sodium butyrate increases the AK-7-

induced reduction of novel object recognition memory,

cell proliferation, and neuroblast differentiation. This

result is supported by previous studies indicating that

sodium butyrate ameliorates memory impairment caused

by hippocampus-related diseases such as cerebral hypo-

perfusion, autism, and chronic mild stress [19,39,46]. In

addition, we demonstrated that sodium butyrate significantly

increases cell proliferation and neuroblast differentiation

in normal mice [23] and mice with brain ischemia [22].

The mechanisms involved were not elucidated, but it is

possible that sodium butyrate reverses D-amphetamine-

induced reduction in Krebs cycle enzyme activities

including citrate synthase, succinate dehydrogenase, and

malate dehydrogenase in the hippocampus [47]. Cranial

irradiation was observed to alter Krebs cycle intermediates

and glutamate/glutamine/GABA metabolism using in

vitro 1H nuclear magnetic resonance spectroscopy [48].

It also significantly reduces neurogenesis [49-51].

In conclusion, chronic inhibition of SIRT2 by AK-7

decreases novel object recognition memory and neuro-

genesis, and the supplementation of sodium butyrate

increases the reduction these changes.
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