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Genetically engineered mouse models are commonly preferred for studying the human disease due to
genetic and pathophysiological similarities between mice and humans. In particular, Cre-loxP system is
widely used as an integral experimental tool for generating the conditional. This system has enabled
researchers to investigate genes of interest in a tissue/cell (spatial control) and/or time (temporal control)
specific manner. A various tissue-specific Cre-driver mouse lines have been generated to date, and new
Cre lines are still being developed. This review provides a brief overview of Cre-loxP system and a few
commonly used promoters for expression of tissue-specific Cre recombinase. Also, we finally introduce
some available links to the Web sites that provides detailed information about Cre mouse lines including
their characterization.
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Cre-loxP System

Cre (Cre recombinase) is one of the tyrosine site-

specific recombinases (T-SSRs) including flipase (Flp)

and D6 specific recombinase (Dre) [1,2]. it was

discovered as a 38-kDa DNA recombinase produced

from cre (cyclization recombinase) gene of bacteriophage

P1 [3-6]. It recognizes the specific DNA fragment

sequences called loxP (locus of x-over, P1) site and

mediates site-specific deletion of DNA sequences between

two loxP sites [7,8]. The loxP site is a 34 bp sequences

consisting of a two 13 bp inverted and palindromic

repeats and 8 bp core sequences (Figure 1A).

General principle of Cre-loxP system

Cre-loxP system is a widely used powerful technology

for mammalian gene editing. This system has advantages

which is very simple manipulation and do not require

additional factors for efficient recombination [1].

Concerning the mechanism of Cre-loxP system, a single

Cre recombinase recognizes two directly repeated loxP

site, then the Cre excises the loxP flanked (floxed) DNA,

thus creating two types of DNA with circular, excised

and inactivated gene Y (Figure 1A). While the Cre-loxP

system is predominantly used in genetic excision, it also

induces the inversion and translocation of DNA between

two loxP sites depending on the orientation and location

of loxP sites [1,2,9].

To generate the spatiotemporally controlled mutant

mice, two elements are needed in the Cre-loxP system

[10-13]. First, Cre-driver strain is generated in which Cre

recombinase is expressed by a promoter that specifically

targets the cell or tissue of interest. Second, loxP flanked

(floxed) DNA containing mouse strain is needed to be
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generated. Conditional knockout mice are then generated

by breeding the Cre-driver strain with a floxed mouse

strain (Figure 1B). The specificity and timing of

recombination are controlled by used promoter and/or

enhancer.

Inducible Cre-loxP system; CreERT

To achieve more accurate genetic functional studies

and clinical applications using Cre-loxP system, it was

required a more sophisticated technique that controls the

Cre activation at the precise time and in a specific cell.

An inducible Cre system is controlled by cell-specific

regulatory elements (promoters and enhancers) and

temporally inducible way by exogenous inducer such as

tamoxifen (tam) or tetracycline (tet) [1,10,14-17].

Tamoxifen-inducible Cre system is achieved by

modified Cre protein fused with the estrogen receptor

containing a mutated ligand binding domain (ER-LBD)

[14,15]. The fused Cre protein is called CreER

recombinase, tamoxifen (also known as CreERT, Cre-

ERT) and normally presented in the cytoplasm in a form

that binds to heat shock protein 90 (HSP90). Upon

binding the synthetic steroids (such tamoxifen or 4-

hydoxytamoxifen; 4-OHT), the interaction is disrupted

between HSP90 and CreERT. This causes nuclear

translocation of CreERT and the interaction of Cre with

loxP sites (Figure 2A). In this system, tamoxifen is

systemically administered via intraperitoneal injection.

To improve the function of targeted mutagenesis using

CreERT, a new version of CreER, CreERT2 (Cre-ERT2),

that is about ten-folds more sensitive to 4-OHT in vivo

than CreERT has been generated [15,18]. Thus, the use

of CreERT2 is more preferred in several biological

fields.

Another temporal and cell specific inducible system is

tetracycline (Tet) system, also called doxycycline (Dox;

a tetracycline derivative)-inducible Cre system. Dox is

much more cost-effective, usable and efficient in

controlling the Tet receptor (TetR) than tetracycline. This

system is available in two modes, Tet-on and Tet-off,

which permit Dox-dependent gene activation [19,20] or

inactivation [17]. The Tet systems consist of three

elements, reverse tetracycline-controlled transactivator

(rtTA), tetracycline-controlled transactivator (tTA) and

tetracycline responsive element (TRE), also referred to

as a tetracycline operon (TetO), which regulates a cre

gene expression. When the rtTA binds to Dox, it can

bind to the tetO7 (7 repeats of tetO) sequences and

activates Cre gene expression (“Tet-on”) (Figure 2B), on

the other hand, tTA binds to tetO7 sequences in normally,

and when it is coupled with Dox, it can no longer bind

to the tetO7 sequences and inactivates Cre expression

(“Tet-off”) (Figure 2C). In Tet system, doxycycline is

usually administered in feed or drinking water.

Figure 1. Mechanism of Cre-loxP system. (A) An overview of Cre-loxP system. 38 kDa Cre recombinase recognizes the loxP sites
of specific 34 bp DNA sequences. (B) General breeding strategy for conditional mutation using loxP and Cre driving mouse line. In
principle, one mouse must have a tissue-specific driven cre gene and another mouse have loxP flanked (floxed) alleles of interest
gene Y. Expression of Cre recombinase excises floxed loci and inactivates the gene Y.
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Figure 2. Principles of Inducible Cre-loxP mutation system. (A) Tamoxifen (Tam)-inducible System of estrogen receptor fused to 
Cre (CreER). In the absence of tamoxifen, expressed fusion protein, CreER, interacts with heat shock protein 90 (HSP90) and 
exists in cytoplasm (1). Administration of Tam disrupts the interaction of HSP90 with CreER (2). Interaction of ER with Tam induces 
nuclear translocation of Cre (3). In the nucleus, the CreER recognizes the loxP sites (4) and inactivates the gene Yin tissue X (5). 
(8 and C) Doxycycline (Dox)-induced Tetracyclin (Tet)-on and -off systems. (8) In Tet-on system, ubiquitous or tissue-specific 
promoter driven rtTA is expressed. In the absence of Dox, inactivated rtTA is unable to bind tetO? (7 repeats of a 19 nuclotide tetO 
minimal promoter, also referred to as TRE) sequence of ere gene. Cre is not expressed. Following Dox administration, Dox 
interacts with the rtTA and allows to activate. Activated rtTA binds to tetO? promoter of ere and induces the Cre expression. (C) In 
Tet-off system, in the absence of Dox, activated ITA is able to bind tetO? (TRE) sequence of ere and induces the Cre expression. 
Upon Dox administration, ITA interacted with Dox is inactivated. Inactivated rTA is not able to bind to tetO? promoter and therefore 
Cre expression is inhibited. 

Tissue-specific promoters of ere lines 

Due to the usefulness of the Cre-IoxP system, numerous 
organ-specific Cre and/or inducible Cre transgenic 
mouse lines have been created and are still being 
developed. Here, we provide some most commonly used 
tissue-specific promoter/enhancer of Cre driver lines in 
Table 1. The various organs were divided into 6 

physiological systems: nervous, integumentary, immune, 
musculoskeletal, digestive and urogenital system. The 
useful promoters of Cre are selected and summarized 
based on International Mouse Phenotyping Consortium 
(IMPC), Mouse Genome Informatics (MGI), The 
Jackson Laboratory (JAX Cre repository) and National 
Center for Biotechnology Information (NCB!) databases. 

Lab Anim Res I December, 2018 I Vol. 34, NO.4 



150 Hyeonhui Kim et al.

Lab Anim Res | December, 2018 | Vol. 34, No. 4

Nervous system

Nervous system consists of two main parts, the central

nervous system (CNS), which includes the brain and

spinal cord, and the peripheral nervous system (PNS),

which includes the all nerves of the entire body. Since

the brain is very anatomically and functionally divided,

we will divide it into three arbitrary regions; cerebrum,

cerebellum and brain stem.

Table 1. Summary of the commonly used Cre promoters for
studying specific tissues

System Tissue/Cell
Targeted 
promoter/
enhancer

References

Nervous (CNS)

Cerebrum

Aldh1l1
CaMIIα
Dlx1
Dlx5/6
Gad2
GFAP
Grik4
Lepr
Nes
nNOS
Pdgfrα
PLP1
Pv (Pvalb)
Slc17a6
Sst
Vip

[21]
[24]
[26]
[27-29]
[30]
[22, 23] 
[25]
[34]
[32]
[30]
[33]
[35]
[30]
[31]
[29]
[29]

Cerebellum Pcp2 [36]

Brain stem
Slc6a3 (DAT)
ePet (Fev)
Npy2r

[37]
[38]
[39]

Spinal cord
Cdh3
Htr6

[40]
[40]

Nervous (PNS)

DRG, SCG Avil [41-45]

Integumentary

Skin 

Krt5
Krt10
Krt14
Krt18

[18]
[48]
[47]
[49]

Hair follicles Lgr6 [50]

Immune

Macrophage Lyz2 [54]

Dendritic cells CD11c (Itgax) [55]

Mast cells CMA1 [56]

T-cells

CD2
CD4
CD8a
Foxp3
Lck
OX40

[57]
[58, 59]
[61]
[62]
[63, 64]
[60]

B-cells CD19 [65, 66]

Haematopoietic
tissue

CD45
(Ly5, Ptprc)
Vav

[70]
[67-69]

Musculoskeletal 

Osteochondro
progenitors

Twist2 (Dermo1)
Prrx1 (Prx1)

[71, 72]
[73]

Osteoblasts

BGLAP (OC)
Col1a1
Sp7
(Osterix, Osx1)

[74]
[75]
[76]

Table 1. Continued

System Tissue/Cell
Targeted 
promoter/
enhancer

References

Osteocytes Dmp1 [77]

Osteoclasts Ctsk [75, 78-80]

Chondrocytes
Acan (Agc1)
Col10a1

[81]
[82, 83]

Muscle

ACTA1 (HSA)
Ckmm (Mck)
Myf5
Myh6 (αMHC)
Tagln (SM22α)

[84]
[87]
[85]
[86]
[88]

Digestive

Esophagus ED-L2 [89-91]

Stomach

Atp4b
H+,K+-ATPase 
b-subunit
Tff1

[92]
[93]
[94]

Intestine
Car1
Vil1

[95]
[96]

Salivary gland Ascl3 [97]

Liver Alb [98, 99]

Pancreas

Gcg (Glu)
Ghrl
Ins1 (MIP)
Ins2 (RIP)
Ppy (PP)
Ptf1a
SOX9

[100, 101]
[102]
[103]
[104]
[101]
[105]
[106]

Urogenital

Bladder Upk2 [107]

Kidney

Aqp2
Foxd1
Gdnf
Ggt1
Kap
Nphs2 (Podocin)

[108]
[109]
[110]
[111]
[112]
[113]

Ovary
Gdf9
Zp3

[114]
[114-116]

Testis
Amh
Hspa2

[117]
[118]

*Note. These promoters are just a few representative examples
of various genes in a tissue
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1) Cerebrum-specific promoters

The aldehyde dehydrogenase 1 family, member L1

(Aldh1L1) [21] and glial fibrillary acidic protein (Gfap)

[22,23] are expressed in astrocytes, but the GFAP is also

known to be expressed in adult neural stem cells.

Expression of calcium/calmodulin-dependent protein

kinase II alpha (CaMK2α) [24] and glutamate receptor,

ionotropic, kainate 4 (Grik4) [25] is detected in each

CA1 and CA3 pyramidal neurons of hippocampus.

Distal-less homeobox 1 (Dlx1) [26], distal-less homeobox

5/6 (Dlx5/6) [27-29], glutamic acid decarboxylase 2

(Gad2), synthase 1, neuronal (nNos), parvalbumin (Pv,

also called Pva, Parv) [30], somatostatin (Sst) and

vasoactive intestinal polypeptide (Vip) promoters are

predominantly expressed in inhibitory GABAergic

interneurons [29], whereas the solute carrier family 17;

sodium-dependent inorganic phosphate cotransporter,

member 6 (Slc17a6) is expressed in excitatory glutamatergic,

vesicular glutamate transport 2 (VGLUT2)-positive

neurons [31]. The nestin (Nes) is also expressed in

precursor cells of neuron and glia [32]. Platelet derived

growth factor receptor, alpha polypeptide (Pdgfrα) is

expressed in inner nuclear layer of the retina [33]. This

promoter is useful in studies of retinal degenerative

diseases such as age-related macular degeneration

(AMD) and retinitis pigmentosa (RP). Expression of the

leptin receptor (Lepr) is detected in hypothalamus and

amygdala, and the promoter is used in research related

to food intake and energy expenditure [34]. In the study

of oligodendrocytes, proteolipid protein (myelin) 1

(PLP1) promoter is very useful in the studies of the gene

function in myelination of mature oligodendrocytes [35].

Here, we provide the detailed expression regions of

cerebral specific promoters in Table 2.

2) Cerebellum-specific promoters

In the cerebellum, Purkinje cells are the most salient

cell type and play a major role in the cerebellar circuit.

Purkinje cell protein 2 (Pcp2) is expressed in most

Purkinje cells and is very useful for cerebellar studies

[36].

3) Brainstem and Spinal cord-specific promoters

The brainstem is a region located between cerebrum

and spinal cord and connects the two. Brainstem consists

of three regions: midbrain, pons and medulla oblongata

of the hindbrain. Solute carrier family 6; neurotransmitter

transporter, dopamine, member 3 (Slc6a3 also known as

DAT; dopamine transporter 1) is expressed in dopaminergic

neurons of the midbrain and used for studying drug

addiction and Parkinson’s disease [37]. FEV; ETS

oncogene family (Fev, also known as ePet) is expressed

in the serotonin (5HT)-specific neurons of the midbrain,

especially in the dorsal ad median raphe regions [38].

Neuropeptide Y receptor Y2 (Npy2r) expression is

restricted in subsets of vagal sensory neurons in the lung

Table 2. Expression regions of cerebral specific promoters

Isocortex Olfactory areas Hippocampus Cortical Subplate Striatum Pallidum 

Aldh1L1

CaMK2α

Dlx1

Dlx5/6

Gad2

GFAP

Grik4

Lepr

Nes

nNos

Pdgfrα

PLP1

Pv

Slc17a6

Sst

Vip

*Table 2 is summarized by quoting data from ALLEN BRAIN ATLAS (http://mouse.brain-map.org/). 
*Table 2 is based on the in situ hybridization data of the adult mouse brain (postnatal 56 day).
*Expression levels above the threshold (0.15 of raw expression value) are considered significant value.
*Raw expression values are expressed as arbitrary units with different colors; 
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and brainstem that regulate respiration [39]. In spinal

cord, cadherin 3 (Cdh3) and 5-hydroxytryptamine;

serotonin, receptor 6 (Htr6) are expressed in a subclass

of inhibitory and excitatory interneurons in the dorsal

horn of the spinal cord, respectively and these promoters

have been used in neuronal functional studies [40].

4) PNS-specific promoters

Unlike the identification of enormous amounts of

CNS-specific promoters of Cre, there are not many

useful PNS-specific promoters. Actin-binding protein,

Advillin (Avil)-driven Cre is expressed in all dorsal root

ganglion (DRG) and trigeminal neurons but not in

superior cervical ganglia (SCG) and is widely used for

the studies of nociception in sensory neurons [41-45].

Integumentary system

The integumentary system consists of the skin and its

appendages such as hair, nails, sebaceous glands and

sweat glands. Skin has at least three layers: epidermis

(outer layer), dermis (middle layer) and hypodermis

(deeper fatty layer, known as subcutaneous layer).

1) Skin and hair follicle-specific promoters

Epidermis, the top layer of skin, has five layers:

stratum corneum, stratum lucidum, stratum granulosum,

stratum spinosum and stratum basale. Each layer is

composed of keratinocytes in different states [46].

Keratinocytes is the main cell type (~90%) of the

epidermis and produces keratin, an intermediate filaments

protein. Keratin 5 (Krt5) and Keratin 14 (Krt14) is

expressed in basal keratinocytes of stratum basale

[18,47]. Keratin 10 (Krt10) is expressed in post-mitotic

suprabasal keratinocytes [48]. Keratin 18 (Krt 18)

expression is observed in Merkel cells of the basal

epidermal layer [49]. Leucine-rich repeat-containing G

protein-coupled receptor 6 (Lgr6, also known as GPCR)

is expressed in hair placodes at embryonic stage and in

follicle bulge of dermis at adult stage [50].

Immune system

Immune system is a host defense response against

foreign invaders, and it protects the body from disease.

This system consists of two working modes: innate

immunity (also called non-specific, natural or native

immunity), which is a first defense mechanism against

invaders and initiates the adaptive immunity, and the

adaptive immunity (also called specific or acquired

immunity), which is systemic response mediating by

lymphocytes such as T and B cells [51-53]. The

leukocytes, three major phagocytes (dendritic cells,

macrophages and neutrophils), basophils, eosinophils,

mast cells and natural killer cells (NK cells), are included

in innate immunity and the helper T, cytotoxic T and B

lymphocytes are included in adaptive immunity.

1) Macrophage/Monocyte-specific promoters

Lysozyme 2 (Lyz2) is expressed in various myeloid

cells including monocytes, macrophages and granulocytes.

It is used for the studies of myeloid cell lineage tracing

and the innate immunity [54].

2) Dendritic cells and Mast cells-specific promoter

Dendritic cells and mast cells are involved in innate

immunity. To study the homeostasis and function of

dendritic cells, Integrin alpha X (Itgax, also known as

CD11c) promoter is used [55]. Chymase 1 (CMA1) is

expressed in mast cells of tissues and can be used for the

studying of their function or fate mapping [56].

3) T and B cells-specific promoters

T and B lymphocytes are representative immune cells

involved in adaptive immunity. CD2 molecule (CD2) is

expressed in peripheral T cells such as CD4 and CD8

cells [57]. The CD4 antigen (CD4), a membrane

glycoprotein, is expressed in CD4-expressing T cells in

lymphoid tissues and used for the studies of CD4-

expressing T cell maturation and proliferation [58,59].

Tumor necrosis factor receptor superfamily, member 4

(OX40, also known as ACT35, Txgp1, TXGP1L and

CD134) is also expressed in activated CD4-positive T

cells [60]. Expression of CD8 antigen, alpha chain

(CD8a) is only observed in peripheral CD8-positive T

cells but not CD4-T cells [61]. Forkhead box P3 (Foxp3)

is used for studying the lineage stability of regulatory T

cells (Treg) [62]. Lymphocyte protein tyrosine kinase

(Lck) is mainly expressed in T cells and used for the

selection and maturation studies of T cell development

in thymus [63,64]. CD19 antigen (CD19) is known to B-

lymphocyte surface antigen and is expressed throughout

B-lymphocyte development [65,66]. 

4) Haematopoietic cells-specific promoters

The protein tyrosine phosphatase, receptor type, C

(Ptprc also known as CD45, Ly5) and vav 1 oncogene

(Vav) are useful for studying gene function in
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haematopoietic stem cells (HSCs) [67-70].

Musculoskeletal system

The musculoskeletal system (also known as the

locomoter system) is composed of two systems, muscular

and skeletal system. This organ system is made up of the

bones (the skeleton), muscles, cartilage, tendon, ligaments,

joints and other connective tissues that bind tissues and

organs together.

1) Mesenchymal stem cells/Osteochondro progenitors,

Osteoblasts, Osteocytes and Osteoclasts-specific promoters

The bone formation (also known as ossification) process

is caused by two types of ossification: intramembranous

ossification (including skull and clavicle), bone is

developed directly from mesenchyme or fibrous connective

tissue and endochondral ossification, bone is created

from a pre-existing cartilage. A majority of the skeleton

is formed by endochondral ossification. In the bone

formation, three different types of cells are involved:

Osteoblasts, Osteocytes and Osteoclasts.

The bone cells, Osteoblasts (immature, bone-forming

cells) and Osteocytes (mature bone cells), are derived

from osteochondro progenitor cells arose from mesenchymal

stem cells (MSCs). In studying these cells, two twist

basic helix-loop-helix transcription factor 2 (Twist2 also

known as Dermo1) [71,72] and paired related homeobox1,

rat (Prrx1 also known as Prx1) [73]-containing promoters

are used in osteochondro progenitor cells and mesenchymal

cells. Also, for the bone growth and physiological

studies, bone gamma-carboxyglutamate protein (BGLAP;

OC, also known as HOC, OCN, Osteocalcin) [74],

collagen, type I, alpha 1 (Col1a1) [75] and Sp7 transcription

factor 7 (Sp7, also known as osterix, Osx1) [76] -promoters

are used for osteoblasts and Dmp1 (dentin matrix protein

1) is used for osteocytes [77]. The osteoclasts, which is

the bone-resorbing cells, are derived from hematopoietic

progenitors. For studying the functional regulation of

osteoclasts, cathepsin K (Ctsk) promoter is used [75,78-

80].

2) Chondrocytes-specific promoters

Chondrocytes are located in the lacunae of the

cartilage. Aggrecan (Acan, also called Agc1) [81] and

collagen, type X, alpha 1 (Col10a1) [82,83] promoters

are used for cartilage-related diseases and physiological

studies. Especially, Col10a1 is preferred in hypertrophic

chondrocytes study.

3) Muscle-specific promoters

The muscular system includes three different types of

muscle tissue: skeletal (also called striated), smooth

(non-striated) and cardiac muscles. Actin, alpha 1,

skeletal muscle (ACTA1 also known as HAS) [84]

expressed in striated muscles, myogenic factor 5 (Myf5)

[85] and myogenic factor 6 (Myh6 also known as

αMHC) expressed in differentiated myocytes [86] are

used in studies of skeletal muscle. Creatine kinase,

muscle (Ckmm also known as Mck) is expressed in both

skeletal and cardiac muscles [87]. Transgelin (Tagln also

known as SM22α; smooth muscle protein 22-alpha) is

expressed in vascular smooth muscle cells of liver and

lung and used in studies of vascular diseases [88].

Digestive system

This system includes digestive tract and various

accessory organs to assist digestion by secreting

enzymes. The digestive tract (also called gastrointestinal

tract) consists of the mouth, esophagus, stomach, small

intestine, large intestine and anus. The accessory organs

consist of salivary glands, liver, pancreas and so on.

1) Esophagus, Stomach and Intestine-specific promoters

Expression of the ED-L2 promoter of the Epstein-Barr

virus, (ED-L2) is reported in squamous epithelial of the

tongue, esophagus and forestomach in previous studies

[89-91]. To study the gastric cancer and diseases of the

stomach, the ATPase, H+/K+ exchanging, beta polypeptide

(Atp4b) [92], H+,K+-ATPase b-subunit (HK) [93] and

trefoil factor 1 (Tff1, also known as PS2 or Bcei)

promoters have been used. Atp4b and HK are expressed

in progenitors of parietal cells and parietal cells secreting

hydrochloric acid (HCl) and intrinsic factor, respectively.

Tff1 is expressed in the epithelium of the glandular

stomach, a source of secreting gastric enzymes and acid

for digestion [94].

The carbonic anhydrase 1 (Car1) is expressed in the

large intestinal tissues, including the cecum and colon [95].

This promoter is useful in colon disease research. Villin

1 (Vil1) promoter is most widely used in intestine studies

and is expressed in epithelial cells of the small and large

intestines from embryonic day 12.5 to adulthood [96].

2) Salivary gland, Liver and pancreas-specific promoters

Achaete-scute family bHLH transcription factor 3

(Ascl3 also known as Sgn1) promoter is expressed in

progenitors of both secretory acinar and ductal cells, and
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thus it is used in developmental studies of salivary gland

[97]. Albumin (Alb) promoter is known to exclusively

express the Cre recombinase in the liver and are the most

commonly used in liver-specific genetic studies [98,99].

Pancreatic cells are divided two compartments: alpha,

beta, delta, epsilon and PP (pancreatic polypeptide) cells

are involved in endocrine function and acinal cells and

epithelial cells lining ducts are involved in exocrine

function. So far, various pancreatic cell-specific promoters

have been identified and used. Glucagon (Gcg, also

known as Glu) [100,101], ghrelin (Ghrl) [102] and

pancreatic polypeptide (Ppy, also known as PP) [101] are

used for alpha, epsilon and PP cells, respectively. Insulin

I (Ins1, also known as MIP) [103] and insulin 2 (Ins2,

also known as RIP) [104] are available in beta cell

specific studies. Pancreas specific transcription factor, 1a

(Ptf1a) [105] and SRY (sex determining region Y)-box

9 (SOX9) [106] are useful in pancreatic acinal and ductal

cell studies, respectively.

Urogenital system

The Urogenital system is composed of urinary system

including bladder and kidney and reproductive organs

including ovary and testis.

1) Bladder and Kidney-specific promoters

Uroplakin 2 (Upk2) is expressed in urothelium of the

bladder and used for the bladder cancer and urothelium

functional studies [107]. The promoters for the kidney

study are as follows. Aquaporin 2 (Aqp2) is expressed

in collecting duct of the kidney and used in nephrological

studies [108]. Forkhead box D1 (Foxd1) is detected in

metanephric mesenchyme and is useful in studies of

pericyte differentiation and fibrotic disease of kidney

[109]. The expression of glial cell line derived neurotrophic

factor (Gdnf) is restricted in renal progenitor cells and

this promoter is useful in kidney developmental studies

[110]. Gamma-glutamyltransferase (Ggt1) is expressed

in the cortical tubular epithelium of the kidney and used

for studying polycystic kidney disease and renal fibrosis

[111]. Kidney androgen regulated protein (Kap) is expressed

in renal proximal tubule of male kidney [112]. Nephrosis

2 (Nphs2, also known as podocin) is exclusively expressed

in podocytes within the kidney glomeruli [113].

2) Ovary and Testis-specific promoters

Growth differentiation factor 9 (Gdf9) is expressed in

oocytes of the primordial follicles and used in

folliculogenesis and oocyte developmental studies [114].

Expression of the zona pellucida glycoprotein 3 (Zp3) is

detected in female germ line, and thus this promoter is

useful for generating the deletion of the desired gene in

the germ line [114-116]. Expression of the anti-

Mullerian hormone (Amh) [117] is restricted in Sertoli

cells and used in studies of the male embryonic sexual

differentiation and spermatogenesis. Heat shock protein

2 (Hspa2) is expressed in spermatocytes and spermatids

within the testis and this promoter is useful in assessing

the gene functional studies during and after meiotic

prophase in pachytene spermatocytes [118].

Accessing the useful resources of 
Cre driver lines: Cre portal sites

To date, a huge numerous Cre transgenic mouse lines

have been established and being generated continuously.

Here we introduce a free, publicly accessible web site

that can be used to provide more accurate and versatile

information on the Cre mouse lines required by the

researchers in Table 3.

Unfortunately, there is still no worldwide database site

where researchers can find all the information about the

desired Cre mouse lines in one place. The scientific

community makes a constant effort for efficiency in

collecting and sharing this information. Coordination of

resources for conditional expression of mutated mouse

alleles (CREATE) consortium web site (http://creline.

org/) had integrated and provided information on Cre

mouse lines from four international partner databases:

Cre portal at MGI (http://www.creportal.org), Cre-X-

Mice (http://nagy.mshri.on.ca/cre_new/index.php), CreZoo

(http://bioit.fleming.gr/crezoo) and CreERT2Zoo (http://

www.ics-mci.fr/crezoo.html) [119-126]. But now information

of CREATE has integrated into Cre portal at International

Mouse Phenotyping Consortium (IMPC) (https://www.

mousephenotype.org/data/order/creline). Cre portal sites

of MGI and CreZOO are available, but Cre-X-Mice and

CreERT2Zoo has integrated into Mouse Resource

Browse (MRB) (http://bioit.fleming.gr/mrb) and MouseCre

(Mouse Cre and CreERT2 zoo) (http://mousecre.

phenomin.fr/), respectively. The Jackson Laboratory’s

Cre Repository (http://www.Jax.org/research-and-faculty/

resources/cre-repository), Neuroscience Blueprint Cre

Driver Network of NIH (National Institutes of Health)

(http://www. credrivermice.org/) and Gene Expression

Nervous System Atlas (GENSAT) (http://www.gensat.
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org/cre,jsp) can also be used to find information about

desired Cre mouse lines. In particular, GENSAT [21,

127] and Neuroscience Blueprint Cre Driver Network

[29] provide useful information in neuroscience.

Conclusions

Technology using Cre-loxp system provides the

sophistication to study the gene functions. To date, a

tremendous amount of Cre-driver lines has been developed

by researchers and are being shared through international

networks. Recently, Cre-loxp system for more precise

control has been continuously developed. Various types

of Cre plasmids are being developed such as fluorescent

Cre fused to fluorescent reporter, optimized Cre with

high expression ratio and split Cre having the different

promoters in N- and C-terminal regions. In addition,

Cre-loxp system approaches has been continually being

developed using Crispr/Cas9 technology and viral

system. Using more sophisticated control techniques,

researchers will be able to understand more precise gene

functions by studying the function of specific genes at

desired time (temporal) and tissue (spatial). The useful

Cre-related portal sites and databases will enhance the

efficiency of research by allowing researchers to find

and obtain the suitable Cre-driver lines for research.
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