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signaling pathway in a middle cerebral
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Abstract

Cerebral ischemia is a major cause of neurodegenerative disease. It induces neuronal vulnerability and susceptibility,
and leads to neuronal cell death. Resveratrol is a polyphenolic compound that acts as an anti-oxidant. It exerts a
neuroprotective effect against focal cerebral ischemic injury. Akt signaling pathway is accepted as a representative
cell survival pathway, including proliferation, growth, and glycogen synthesis. This study investigated whether
resveratrol regulates Akt/glycogen synthase kinase-3β (GSK-3β) pathway in a middle cerebral artery occlusion
(MCAO)-induced ischemic brain injury. Adult male rats were intraperitoneally injected with vehicle or resveratrol
(30 mg/kg) and cerebral cortices were isolated 24 h after MCAO. Neurological behavior test, corner test, brain edema
measurment, and 2,3,5-triphenyltetrazolium chloride staining were performed to elucidate the neuroprotective effects
of resveratrol. Phospho-Akt and phospho-GSK-3β expression levels were measured using Western blot analysis. MCAO
injury led to severe neurobehavioral deficit, infraction, and histopathological changes in cerebral cortex. However,
resveratrol treatment alleviated these changes caused by MCAO injury. Moreover, MCAO injury induced decreases in
phospho-Akt and phospho-GSK-3β protein levels, whereas resveratrol attenuated these decreases. Phosphorylations of
Akt and GSK-3β act as a critical role for the suppression of apoptotic cell death. Thus, our finding suggests that
resveratrol attenuates neuronal cell death in MCAO-induced cerebral ischemia and Akt/GSK-3β signaling pathway
contributes to the neuroprotective effect of resveratrol.
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Introduction
Resveratrol is a polyphenolic compound that abundantly
exists in grape and red wine. It is well known that res-
veratrol acts as an anti-oxidant and prevents oxidative
damage in vascular and nervous system [1–3]. It also has
a vasodilatory effect through stimulating nitric oxide
production in endothelial cells [4]. Moreover, it exerts a
neuroprotective effect against traumatic brain injury.
Neuroprotective mechanisms of resveratrol are associ-
ated with its anti-inflammatory, anti-apoptotic, and anti-
oxidant properties [5–7]. Resveratrol also plays a critical
role in alleviation of neurodegenerative diseases such as

Parkinson disease and Alzheimer’s disease [8, 9]. Res-
veratrol protects neurons against focal cerebral ischemia
and attenuates brain damage via activation of PI3K/Akt
signaling pathway [10, 11].
Akt is a member of serine/threonine protein kinases

family that performs an essential role in the modulation
of cell development, proliferation, growth, and survival
[12]. Akt is known as protein kinase B and extensively
expressed in various tissues. Akt acts as a mediator of
cell survival and regulates numerous downstream tar-
gets, such as glycogen synthase kinase-3 (GSK-3), fork-
head transcription factors, and Bad [13–15]. It is also
involved in multiple cellular processes, such as cell pro-
liferation, transcription, apoptosis, and glucose meta-
bolism [15, 16]. Moreover, Akt has a critical function in
neuronal survival during apoptotic injury [17]. Akt is
substantially activated in the nervous system during
cellular stress. Overexpression of Akt prevents apoptosis
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caused by growth factor depletion in cerebellar granule
neurons [18].
GSK-3 is a serine/threonine protein kinases that regu-

lates glycogen synthesis in response to insulin [19]. More-
over, it phosphorylates a broad range of substrates,
including transcription factors, translation initiation fac-
tor, and eukaryotic initiation factor 2 [20, 21]. GSK-3 has
two isoform, GSK-3α and GSK-3β. GSK-3β is a critical
downstream target of the phosphoinositide 3-kinase
(PI3K)/Akt signaling pathway and activity of GSK-3β is
suppressed by Akt-mediated phosphorylation at serine 9
[19, 22]. GSK-3β activates caspase-3 and leads to apop-
totic cell death. Activated Akt inhibits GSK-3β function
and mediates anti-apoptotic effect [23]. Previous studies
reported that resveratrol improves neurological behavior
score and attenuates brain damage on ischemic stroke
[24, 25]. Although many studies have been shown the
neuroprotective effects of resveratrol, its mechanism
has not been completely elucidated. Thus, this study
confirmed the neuroprotective effects of resveratrol in
middle cerebral artery occlusion (MCAO) animal
model and investigated the underlying mechanisms of
resveratrol through phosphorylations of Akt and its
downstream target, GSK-3β.

Materials and methods
Experimental animals
Adult male Sprague-Dawley rats (220–230 g, n = 32)
were purchased from Samtako Co. (Animal Breeding
Center, Osan Korea). All animals were housed in con-
trolled light condition (12 h light/ 12 h dark cycle) and
temperature (25 °C). Drinking water and feed were freely
supplied. All experimental procedures were carried out
according to the guideline of the Institutional Animal
Care and Use Committee of Gyeongsang National Uni-
versity. Animals were divided into the following four
groups: vehicle + sham, resveratrol + sham, vehicle +
MCAO, and resveratrol + MCAO (8 rats per group).
Resveratrol (30 mg/kg, Sigma-Aldrich, St. Louis, MO,
USA) was dissolved in 0.05% dimethyl sulfoxide (DMSO;
Sigma-Aldrich) in phosphate buffered saline and imme-
diately intraperitoneally injected [26]. Vehicle-treated
animals were injected with only DMSO solution without
resveratrol.

Middle cerebral artery occlusion
Rats were anesthetized with Zoletil (50 mg/kg; Virbac,
Carros, France) and placed on a surgical plate with su-
pine position. MCAO was surgically operated as previ-
ously described method [27]. A midline of neck skin was
incised and right common carotid artery (CCA) was ex-
posed. Right CCA was carefully separated from the adja-
cent muscles and nerves, and temporally blocked with a
microvascular clip. Branches of external carotid artery

(ECA) were carefully dissected and ligated. Proximal end
of the ECA was incised and a nylon filament 4/0 with
flame-rounded tip was slowly inserted into the incision
of ECA. Nylon filament was advanced into the lumen of
internal carotid artery (ICA) until a slight resistance felt.
It was inserted approximately 21 to 23 mm from the bi-
furcation of ECA and occluded the origin of middle
cerebral artery. Filament was ligated with ECA and skin
incision was sutured with black silk. Sham-operated ani-
mals were performed with the same surgical procedure
without insertion of a nylon filament. Animals were kept
on a heating pad to maintain body temperatures and
given free access to feed and water. Neurological behav-
ior test was performed 24 h after MCAO and exped-
itiously decapitated to reduce suffering. Whole brains
were carefully removed and cerebral cortices were sepa-
rated. Tissues were kept at − 70 °C or fixed in 4% neutral
buffered paraformaldehyde (NBF) for further experimen-
tal procedure.

Neurological behavior test and brain edema
measurement
Neurological behavior test was performed by previously
described methods [28, 29]. This test was scored with a
five-point scoring system by following standard: no
neurological deficit (0), normal posture but failed to ex-
tend forepaw on the contralateral side of ischemic region
(1), normal posture and circling to the contralateral side
of ischemic region (2), falling down to the contralateral
side of ischemic region (3), no impulsive movement (4).
Isolated right cerebral cortices were weighed for evalu-
ation of brain edema. Measured weight was considered
as wet weight. After weight measurement, right cerebral
cortices were dried for 24 h at 100 °C and weighed. This
weight was taken as dry weight. The water content in
the cerebral cortex was calculated as follows: [(wet
weight - dry weight)/wet weight] × 100.

Corner test
Corner test was performed to evaluate sensorimotor
function by previously described manuals [30, 31]. Cor-
ner test apparatus was formed with two vertical boards
(30 × 20 × 1 cm) that attached to each edge at the angle
of 30° with a small opening. The gap between two
boards encouraged animals to move toward to the
corner. When animals move to the corner, both side of
vibrissae simultaneously touched boards. After vibrissae
stimulation, animals rear against the corner and turn
right or left side. Turning movement is recorded and
rearing movement is excluded from measurement. Ten
turns were counted for each trial and result was
expressed as the number of right turn [30, 31].
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Triphenyltetrazolium chloride staining
Whole brains were carefully removed from skull and
sliced into 2mm coronary sections with a brain matrix
(Ted Pella, Redding, CA, USA). Coronary section levels
were marked using bregma level. Sliced tissues were
reacted in 2% triphenyltetrazolium chloride (TTC; Sigma
Aldrich) for 30min at 37 °C and fixed in 4% NBP for 24 h.
Images of stained tissues were scanned with Agfa ARCUS
1200™ (Agfa-Gevaert, Mortsel, Belgium) and analyzed
using Image-ProPlus 4.0 software (Media Cybernetics,
Silver Spring, MD, USA) to evaluate the infarct volume.
Ischemic area (%) was calculated by the following formula:
(infarction area/whole section area) × 100.

Hematoxylin and eosin staining
Fixed brain tissues were washed with flowing tap water,
dehydrated by series of graded ethyl alcohol from 70 to
100%, and cleaned with xylene. Brain tissues were em-
bedded in paraffin tank using embedding center (Leica,
Westlar, Germany) and hardened as tissue blocks. Tis-
sues were cut into 4 μm sections and placed on glass
slides in tissue bath (Leica). Sections were dried on slide
warmer (Thermo Fisher Scientific, Waltham, MA, USA),
deparaffinized with xylene, and rehydrated by series of
graded ethyl alcohol from 100 to 70%. They were stained
with hematoxylin solution (Sigma-Aldrich) and eosin so-
lution (Sigma-Aldrich), subsequently. Stained tissues
were washed with tap water and dehydrated with series
of graded ethyl alcohol. They were mounted with per-
mount mounting solution (Thermo Fisher Scientific)
and photographed using Olympus microscope (Olympus,
Tokyo, Japan).

Western blot analysis
Right cerebral cortices were homogenized in lysis buffer
[1% Triton X-100, 1 mM EDTA in PBS (pH 7.4)] con-
taining 0.2 mM phenylmethylsulfonyl fluoride. Homoge-
nates were sonicated and centrifuged at 15,000 g for 30
min at 4 °C. Supernatants were collected and protein
concentrations were determined with a bicinchoninic
acid protein assay kit (Pierce, Rockford, IL, USA) ac-
cording to the manufacturer’s manual. Protein samples
were denatured by heating for 3 min at 100 °C and
cooled for 1 min in ice. Equal amount of proteins (30 μg)
were loaded and electrophoresed in 10% sodium
dodecyl sulfate polyacrylamide gel electrophoresis gel.
Separated proteins were transferred to polyvinylidene
fluoride membranes. Membranes were incubated in 5%
skim milk with Tris-buffered saline containing 0.1%
Tween-20 (TBST) for 1 h. After washing with TBST,
membranes were incubated for overnight at 4 °C with
following primary antibodies: anti-Akt, anti-phospho-
Akt (Serine 473), anti-GSK-3β, anti-phospho-GSK-3β
(Serine 9), (diluted 1:1000, Cell Signaling Technology,

Beverly, MA, USA), and anti-β-actin (diluted 1:1000,
Millipore, Billerica, MA, USA). Membranes were washed
three times with TBST for 10 min and treated with their
respective secondary antibody (horseradish peroxidase-
conjugated anti-rabbit IgG or anti-mouse IgG, diluted 1:
5000, Cell Signaling Technology) for 2 h at room
temperature. After washing with TBST, membranes were
reacted with enhanced chemiluminescence Western
Blotting detection reagents (GE Healthcare, Chicago, IL,
USA) for the detection of immunoreactive protein bands.
Membranes were exposed on Fuji medical X-ray film (Fuji
Film, Tokyo, Japan) to visualize immunoreactive bands.
The intensity value of protein bands were analyzed with
Image J software (National Institutes of Health, Bethesda,
MD, USA).

Statistical analysis
All experiment data were presented as the mean ±
standard error of means (S.E.M.). The results of each
group were compared by two-way analysis of variance
(ANOVA) followed by post-hoc Scheffe’s test. P < 0.05
was regarded as statistically significant.

Results
We confirmed that MCAO-induced cerebral ischemia
leads to neurological behavior dysfunction and brain
infarction. As a further study, we showed that resveratrol
prevented MCAO-induced these changes. We evaluated
neurological damage by neurological behavior deficit
scoring and brain edema measurement. MCAO-
operated animals with vehicle showed severe neuro-
logical symptoms, such as involuntary circling and seiz-
ure. Resveratrol treatment in MCAO-operated animals
attenuated these symptoms and showed only mild
neurological symptoms. Resveratrol significantly reduced
MCAO-induced increase in neurological deficit scores.
Neurological deficit scores were 3.25 ± 0.24 and 1.87 ±
0.38 in vehicle+ MCAO and resveratrol + MCAO ani-
mals, respectively (Fig. 1a). Results of corner test showed
the direction bias of the response by bilateral stimuli.
The number of right turn indicates the ipsilateral side of
insulted brain hemisphere. Sham-operated animals
appeared as a similar pattern in turning left and right
direction. However, MCAO animals with vehicle showed
rightward-preferred turning pattern, resveratrol treat-
ment reduced the number of rightward-preferred turn-
ing. Numbers of right turn were 9.45 ± 0.35 and 7.1 ±
0.53 in vehicle+ MCAO and resveratrol + MCAO ani-
mals, respectively (Fig. 1b). Water contents of cerebral
cortices were measured to assess the degree of brain
edema. MCAO-operated animals with vehicle showed
severe brain edema, resveratrol treatment alleviated
MCAO-induced excessive brain edema. Water contents
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were 87.73 ± 1.12 and 84.32 ± 1.51% in vehicle + MCAO
and resveratrol + MCAO animals, respectively (Fig. 1c).
TTC staining was performed to evaluate the infarct

volume. Infarct area was stained distinct red color, while
infarct area remained as unstained white color. Results
of TTC staining showed a widespread infarction in
vehicle + MCAO animals. However, infarct area was
significantly reduced in resveratrol + MCAO animals.
Moreover, infarct area was not observed in sham-
operated animals regardless of vehicle or resveratrol
treatment (Fig. 2a). Volumes of infarct area were
26.31 ± 2.31% and 17.08 ± 2.70% in vehicle+ MCAO and
resveratrol + MCAO animals, respectively (Fig. 2b).
Morphological study showed the histopathological
changes in cerebral cortex of MCAO-operated animals
(Fig. 2c-f). We observed shape of typical pyramidal cells
with large and round nucleus in sham-operated animals.
They also had intact cytoplasm and dendrites. However,
we found shrunken neurons with abnormal morphology
in MCAO-operated animals with vehicle. They had con-
densed and shrunken nuclei and numerous vacuoles in
cytoplasm. Resveratrol treatment attenuated MCAO-
induced these pathological changes. Pyknotic nuclei and
vacuoles in cytoplasm were reduced in MCAO animals
with resveratrol.
Western blot analysis result showed the expression

changes of phospho-Akt and phospho-GSK-3β in cere-
bral cortex between vehicle + MCAO and resveratrol +
MCAO animals (Fig. 3). phospho-Akt and phospho-
GSK-3β protein expression levels were significantly de-
creased in cerebral cortex of vehicle + MCAO animals.
However, these decreases were recovered in resveratrol
+ MCAO animals (Fig. 3a). Phospho-Akt levels were
0.06 ± 0.02 in vehicle + MCAO and 0.74 ± 0.08 in resver-
atrol + MCAO animals. Phospho-GSK-3β levels were

0.30 ± 0.02 and 0.61 ± 0.06 in vehicle + MCAO and
resveratrol + MCAO animals, respectively (Fig. 3b).

Discussion
Cerebral ischemia causes various neurological dysfunc-
tions, including complex neuromuscular dysfunction
and neurological behavior deficit [32]. It leads to the
formation of pathological lesions, such as swollen axon,
neuronal perikaryal damage, and brain edema [33, 34].
Moreover, it is accepted that free radical causes neuronal
damage in cerebral ischemia. Resveratrol is a strong
anti-oxidant that abundantly presents in grape seed. It
suppresses infarct size and improves neurological func-
tions in ischemic brain injury [24, 35–37]. In our study,
we indirectly treated resveratrol through intraperitoneal
injection. It is reported that resveratrol can distribute in
brain through intraperitoneal injection [38]. Resveratrol
also has a neuroprotective effect through intraperitoneal
injection against kainic acid-induced brain damage, glo-
bal cerebral ischemia and focal ischemia [38, 39]. Also,
resveratrol exerts neuroprotective effect against cerebral
ischemic injury by modulating mitochondrial dysfunc-
tion [37]. Resveratrol protects neurons against cerebral
ischemia by inhibiting inflammation and apoptosis [40].
Moreover, it also prevents brain damage by reducing
oxidative stress and ameliorating mitochondria damage
in a cerebral ischemia [41]. We confirmed the neuro-
protective effect of resveratrol in MCAO animal model.
Resveratrol alleviated MCAO-induced neurological
behavior deficits. Moreover, our previous study has been
shown that resveratrol regulates the expression of
various proteins that associated with oxidative stress in
focal cerebral ischemia [26].
It is accepted that resveratrol exerts a neuroprotective

effect by modulating of various molecular mechanism.

Fig. 1 Neurobehavioral scores (a), corner test (b), and brain edema measurement (c) in vehicle + sham, resveratrol + sham, vehicle + middle
cerebral artery occlusion (MCAO), and resveratrol + MCAO animals. Resveratrol attenuated the neurological behavior deficits and brain edema
induced by ischemic stroke. Data (n = 8) are represented as the mean ± S.E.M. * p < 0.01, ** p < 0.05 vs. vehicle + sham animals, # p < 0.05 vs.
vehicle + MCAO animals

Park et al. Laboratory Animal Research           (2019) 35:18 Page 4 of 8



Resveratrol decreases the elevated level of matrix metal-
loproteinase 9 caused by cerebral ischemia [42]. More-
over, resveratrol prevented the brain from ischemia
through modulation of Ca2+ response element-binding
protein [43]. Resveratrol protects hippocampal neurons
against ischemic injury-induced damage via the extracel-
lular signal regulated kinase signaling pathway [44]. It
also exerts its neuroprotective effect by modulating of
PI3K/Akt signaling pathway [11]. Resveratrol also atten-
uates ischemic brain damage through upregulation of in-
flammatory factors, interleukin-1 beta (IL-1β) and tumor
necrosis factor-alpha (TNF-α) [11]. PI3K/Akt signaling
pathway plays a key role for cell growth and cell survival.
Akt also exerts anti-apoptotic effect by inhibiting the
pro-apoptotic proteins, such as Bad and forkhead tran-
scription factors [14]. Akt prevents injury-induced neur-
onal death and accelerates axonal regeneration [45]. It
also contributes to neuronal migration and survival

[46–49]. Our previous studies demonstrated that
MCAO decreases Akt phosphorylation and consecutively
reduces phosphorylation of its down-stream targets such
as Bad, forkhead transcription factors, and GSK-3 beta
[50–53]. Moreover, neuroprotective agents alleviate
MCAO-induced decreases in phosphorylation of Akt and
its down-stream targets [50–53]. MCAO clearly results in
decreased levels of phospho-Akt and phospho-GSK-3β
and neuroprotective agents attenuate the decreases in the
levels of these proteins [50, 53]. The present study showed
that focal cerebral ischemia significantly reduces phospho-
Akt and phospho-GSK-3β expressions in cerebral cortex.
Moreover, resveratrol delays the progression of 6-
hydroxydopamine-induced motor dysfunction and apop-
tosis by activating PI3K/Akt cell survival pathway [54].
Phosphorylation of Akt is upregulated in early stage of
ischemic stroke as a defensive reaction of neuronal cells
whether this upregulation is terminated in late stage of

Fig. 2 Representative photograph of TTC staining (a), infarct volume (b), and hematoxylin and eosin staining (c-f) in cerebral cortex of vehicle +
sham, resveratrol + sham, vehicle + middle cerebral artery occlusion (MCAO), and resveratrol + MCAO animals. Infarct volume was calculated by
ratio of infarction area to total area. Resveratrol attenuated the MCAO-induced infarct region. C-F photos indicate the square areas of A. Arrows
indicate shrunken and condensed nuclei and open arrows indicate swelled and vacuolated forms. Scale bar = 100 μm. Data (n = 4) are
represented as the mean ± S.E.M. * p < 0.01, ** p < 0.05 vs. vehicle + sham animals, # p < 0.05 vs. vehicle + MCAO animals
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ischemic stroke [55]. In our study, we performed MCAO
for 24 h which is a late stage of ischemic stroke and phos-
phorylation of Akt is suppressed. However, resveratrol at-
tenuated MCAO-induced decrease in phospho-Akt.
Decrease of phospho-Akt induces apoptotic cell death and
consequently inhibits cell survival. In addition, we eluci-
dated the changes of GSK-3β by resveratrol treatment in
MCAO-induced cerebral ischemia. Our results showed
that resveratrol treatment in cerebral ischemia regulates
Akt and its downstream target, GSK-3β. Focal cerebral is-
chemia caused by MCAO decreases phospho-GSK-3β
levels and resveratrol alleviates decreases in phospho-
GSK-3β. GSK-3β induces cell death by increasing caspase-
3 activity in ischemic injury [56]. Thus, it is considered
that phosphorylation of GSK-3β by Akt is a critical
process for the inhibition of its pro-apoptotic activity. Pre-
vious study showed that resveratrol significantly downre-
gulates cleaved caspase-3 and bax expressions, upregulates
bcl-2 expression in stroke condition [57]. Moreover, res-
veratrol alleviates nerve injury in cerebral ischemia via up-
regulation of hippocampal Bcl-2 [58]. Inactivation of

caspase-3 leads to the suppression of apoptotic cell death.
Resveratrol improves neurological function and neuronal
damage, alleviates neuronal apoptosis in cerebral ischemia.
We clearly demonstrated that resveratrol prevents the
ischemic injury-induced decrease in phospho-GSK-3β
expression. The maintenance of phospho-GSK-3β by res-
veratrol in cerebral ischemia mediates the inactivation of
caspase-3 and suppression of apoptosis [56, 57]. The Akt/
GSK-3β signaling pathway is an important mechanism of
neuroprotective effect. We elucidated the fact that resver-
atrol prevents the MCAO injury-induced reductions in
phospho-Akt and phospho-GSK-3β.

Conclusions
In this study, we confirmed that resveratrol improves
neuronal damage against MCAO-induced cerebral ische-
mic injury. Furthermore, our study reveals that resvera-
trol has a neuroprotective effects by regulating the Akt/
GSK-3β signaling pathway. Therefore, this study can
suggest the underlying mechanisms in neuroprotective
effect of resveratrol attributing to neuronal cell survival.

Fig. 3 Western blot analysis of phospho-Akt and phospho-GSK-3β in cerebral cortex of vehicle + sham, resveratrol + sham, vehicle + middle
cerebral artery occlusion (MCAO), and resveratrol + MCAO animals (a). Densitometric analysis is represented as a ratio of phospho-Akt (b) and
phospho-GSK-3β (c) intensity to β-actin intensity. Data (n = 4) are shown as the mean ± S.E.M. * p < 0.01, ** p < 0.05 vs. vehicle + sham animals, #
p < 0.05 vs. vehicle + MCAO animals
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