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Abstract

Genetically engineered mouse models are used in high-throughput phenotyping screens to understand genotype-
phenotype associations and their relevance to human diseases. However, not all mutant mouse lines with
detectable phenotypes are associated with human diseases. Here, we propose the “Target gene selection system
for Genetically engineered mouse models” (TarGo). Using a combination of human disease descriptions, network
topology, and genotype-phenotype correlations, novel genes that are potentially related to human diseases are
suggested. We constructed a gene interaction network using protein-protein interactions, molecular pathways, and
co-expression data. Several repositories for human disease signatures were used to obtain information on human
disease-related genes. We calculated disease- or phenotype-specific gene ranks using network topology and
disease signatures. In conclusion, TarGo provides many novel features for gene function prediction.
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Introduction
In the post-genome era, the functional analysis of
protein-coding genes remains an important goal and a
major challenge for the field of biology. To find novel
gene functions, various genetically engineered mouse
(GEM) models have been used, involving the use of
mutagens such as N-ethyl-N-nitrosourea (ENU), trans-
posons, gene trapping, and gene targeting. Recently, the
International Mouse Phenotyping Consortium (IMPC)
started generating knockout mice for every mouse gene
and collecting phenotyping data for each null mutation
[1]. To accelerate this goal, a targeted gene selection
system for GEM models was deemed necessary.
Because GEM constructions require a considerable

amount of time and money, target gene selection is
considered the most important step. To select GEM tar-
get genes using an unsupervised method, two different

approaches were applied in systems biology. First, high
throughput data analysis based approaches have been
employed. GEM target genes are predicted using Omics
data analysis or cross-species gene conservation [2–4].
Those approaches provide the opportunity to find novel
gene functions and putative driver genes in disease, but
are of limited use when predicting sample sensitivity.
Second, ontology structure-based approaches have been
employed. Researchers have considered the integration
between human disease and mouse phenotype ontol-
ogies [5, 6]. The PhenomicDB and PhenoHM databases
use text-matching approaches between two different
terms [7, 8]. MouseFinder, PhenoDigm, and Phenom-
eNet databases provide gene-disease or gene-phenotype
associations through cross-species phenotype compari-
sons [9–11]. Ontology-based approaches have a good
prediction performance for gene function, but cannot
predict the function of non-annotated genes. Recently,
integration approaches between high throughput data
and network search are proposed. ExomeWalker pro-
vides an integrated approach to rank candidate genes
using a random-walk with restart algorithm [12]. Hwang
and colleagues proposed a co-clustering method be-
tween phenotypes and genes [13]. The limitations of an
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integration method are the dependence on pre-constructed
datasets and non-optimal filtering strategies for false posi-
tives. The goal of those previous approaches is gene
function estimation, but limitations are remained.
Here, we propose an approach, called Target gene

selection system for Genetically engineered mouse
models (TarGo). We predicted mouse gene function
with molecular interactions and sorting relationship for
phenotype (or disease) signature genes. We calculated
association between phenotype (or disease) signature
gene and other gene using the Topic-Sensitive PageRank
(TSPR) and the TrustRank algorithms [14]. The gene
interaction network was constructed using PPIs, molecu-
lar pathway analysis, and HumanNet. The phenotype (or
disease) signature genes are selected from MeSH, HPO,
GWAS Central, and Orphanet [15–18]. We evaluated
the resulting prioritized genes according to the known
genotype-phenotype associations contained in Mouse
Genome Informatics (MGI). Therefore, TarGo includes
many novel features for gene function predictions. The
Web server is available at http://combio.snu.ac.kr/targo.

Results
Construction of mouse network
The gene interaction network was composed of three
molecular interaction databases; 377,473 PPIs from
NCBI GeneRIF, 88,279 pathways from Pathway Com-
mons, and 882,705 Co-expression data from HumanNet
[19–21]. From herein, nodes will refer to genes and
edges will refer to the genetic interaction between the
genes. To predict human disease-related genes in the
mouse model, a network was constructed using ortholo-
gous genes in humans and mice.
To select orthologous genes, we used NCBI’s Homolo-

gene (http://www.ncbi.nlm.nih.gov/homologene). In total,
16,353 orthologous genes and 1,204,365 interactions were
selected from three repositories described above. Most
(81%) of these genes and 10% of the interactions over-
lapped in all three databases. The TSPR algorithm re-
quired the hyperlink matrix, which is an n × n matrix for
a given interaction network, where n is the total number
of nodes in the network. All nodes were designated an
“out-degree” value, which is the number of outgoing edges
(interactions) for that specific node. If gene i had links to
gene j, i would provide 1/out-degree to j in the hyperlink
matrix (Fig. 1). If gene i did not have outgoing edges, then
this gene was termed a “dangling node,” and all dangling
nodes were collected in a dangling matrix. The dangling
matrix was given the constant value 1/n.

Construction of weight matrix from the annotation
database
The weight matrix in the TarGo system was constructed
using signature genes. If genes were not annotated to a

specific phenotype, values in the weight matrix were 0. If
genes were annotated to a specific phenotype (signature
genes), values were 1/G (G is total number of signature
genes for a specific phenotype). The weight matrix
consisted of the number of nodes for each selected
phenotype, which were used to generate data on genes
(human and mouse) and their associated phenotypes.
The information originated from multiple resources;
GWAS information was collected from GWAS Central,
PheGenI, and from public repositories for genetic associ-
ation studies [15, 22]. CNV data were selected from the
CNVD database, a comprehensive resource for CNVs
and related diseases [23]. We obtained data on abnormal
protein expression in human disease from dbDEPC,
which provided an overview of protein level expression
changes, mainly detected by mass spectrometry [24]. Fi-
nally, pre-annotation data was collected from MGI and
Orphanet [18, 25]. In total, this resulted in 16,305 genes,
3330 phenotypes, and 326 diseases to populate the test
database. The human disease terms were converted to
MeSH or Orphanet ID. The human phenotypes were
converted to Mammalian Phenotype (MP) term using
HPO associations. MP term was constructed for anno-
tating mouse knockouts, mutations, and other type
alleles at the Mouse Genome Informatcs (MGI) data-
base. MP ontology provides phenotype reference for the
observable morphological and behavioral character.

Hub node effect in ranking
A hub node in a network is defined as a highly connected
node and will be predicted putative candidate with high
frequency. Using the Pearson method, we examined the
association between the TrustRank score and node degree.
The correlation was calculated for each MP term or
MeSH term. For 98% of MP terms, the correlations be-
tween node degree and TrustRank score were lower than
0.6, while 90% of MeSH terms had a correlation coeffi-
cient lower than 0.6. In most phenotypes, the hub node
was not highly ranked (Additional file 1: Figure S1). We
used the same network topology in the gene ranking
calculation, and the association score was calculated to be
dependent on other topics. This results indicates that hub
node is not frequently predicted in network and putative
candidates will be associated for signatures genes.

Evaluation of a known phenotype
To validate our method, we evaluated the prediction re-
sults according to known gene-disease and gene-
phenotype associations. All the information for known
gene-phenotype associations was collected from the
“Mouse/Human Orthology with Phenotype Annotations”
table in MGI. A known gene-disease model was estab-
lished from the “Genotypes with Both Phenotype and
Disease Annotations for Marker Type Genes, Excluding
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Conditional Mutations” and “Genotypes with Both
Phenotype and Negated Disease Annotations for Marker
Type Genes, Excluding Conditional Mutations” tables in
MGI. We selected the top 100 genes from the prediction
results. Receiver operating characteristic (ROC) analysis
was performed using the R ROCR package [26]. When
the TrustRank method was used in MP, the AUC score
increased from 0.66 to 0.91 and performance was further

increased using the Spammass filter (Fig. 2a). Using the
TrustRank method in MeSH, the AUC score increased
from 0.63 to 0.95 and slightly decreased to 0.93 by fur-
ther using Spammass filter (Fig. 2b). We suggest that
more genes are associated with disease terms (annotated
with MeSH) than with phenotype terms; however,
TarGo still exhibits good performance (AUC = 0.93).
This result could be due to the complexity of the

Fig. 1 Prediction of gene-phenotype association using interaction network and signature genes. The hyperlink matrix and dangling matrix (no
outgoing edge matrix) were constructed from interaction databases (red box). The weight matrix was constructed using public annotation
databases (orange box). The d represented the dumping factor (0.85). The TSPR score represented the gene association for that particular
phenotype. For this given TSPR score vector, A and D were signature genes. The seed nodes were selected from the top three ranking TSPR
scores. A and D were good seeds because these two genes were signature genes in the input phenotype and ranked among the top three in
the TSPR result. Therefore, d is 2 in this figure, meaning the good seed vector is ½. All other cases were given 0. Finally, phenotype-associated
genes were selected from those with a high TrustRank score and low Spammass score
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disease, as a disease will normally be related to various
genes and phenotypes.
For a cutoff guideline, we compared our prediction re-

sults to IMPC mouse phenotypes validated by the high-
throughput pipeline (Fig. 2c). From the IMPC database,
673 genes were selected (P < 0.0001). In the TarGo data,
3291 genes were selected. Because the TarGo prediction
result depended on the amount of knowledge, we
selected high-degree (or high annotation) genes, which
comprised 2% of all genes in the network. The results
showed that 101 genes over-lapped between IMPC and
TarGo. The top 20% of the TarGo prediction results
overlapped with > 70% of the IMPC results, and the top
30% of the TarGo prediction results overlapped with
100% of the IMPC results. Most TarGo-selected highly
ranked genes considerably overlapped with IMPC and
showed good performance.

Web contents of TarGo
Association between gene and phenotype: Pre-computed
genotype-disease and genotype-phenotype associations
can be searched using the gene symbol, MeSH term, or
MP term. Using the search menu, users can find predic-
tion results as well as known phenotypes, such as known
mammalian phenotypes, known GEM models, and pos-
sible phenotype associations (Fig. 3).
These novel phenotype candidates were confirmed

using high-throughput mouse phenotyping data in

IMPC. For example, knockout (KO) mouse phenotypes
for the genes Ndfip2 and Spop were not annotated in
MGI. We predicted novel phenotypes of significant
changes in sodium levels in the Ndfip2 KO mouse and
increased circulating potassium levels in the Spop KO
mouse. In mouse phenotyping data, these phenotypes
were evident as a significant change between normal and
deficient mice (P = 0.0005 and 0.007, respectively). The
Slc40a1 KO mouse displays abnormalities in embryogen-
esis, growth size, and the hematopoietic and immune
systems [27]. TarGo predicted a novel phenotype and
abnormal bone mineralization, which was identified by
IMPC phenotype data (P = 0.0000005). The Pfn1 KO
mouse phenotype is annotated association with adipose
tissue, growth/size, homeostasis/metabolism, integu-
ment, limbs/digits/tail, and mortality/aging [28]. TarGo
predicted a novel phenotype of abnormal iris morph-
ology, and we confirmed this result in the mouse pheno-
type data (P = 0.009). Slc25a4-deficient mice show
abnormal cardiovascular, homeostasis, and muscle phe-
notypes [29]. TarGo predicted several novel phenotypes
for Slc25a4 KO, such as increased circulating calcium
levels (MP:0000194), decreased circulating glycerol levels
(MP:0003442) and increased heart weight (MP:0002833).
We found some significant changes in IMPC phenotype
data (P = 0.000007, 6e-16, respectively). Arpc1b KO mice
was reported homeostasis phenotype (1). We found a
novel function for decreased circulating serum albumin

Fig. 2 ROC curve for TarGo prediction results. a In the MP term, the AUC score of TSPR is 0.66, TrustRank is 0.82, and SM filter is 0.91. b In the
MeSH term, the AUC score of TSPR is 0.63, TrustRank is 0.95, and SM filter is 0.93. c Overlapping between IMPC and TarGo. the X-axis indicates
high-ranking genes sorted by rank score. The Y-axis is the overlapping percentage between IMPC and TarGo
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levels (MP:0005419) in TarGo and IMPC (P = 0.0001).
Abnormalities in behavior, growth/size, hematopoiesis,
homeostasis, immune system, integuments, and vision/
eyes are known phenotypes for Clk1 KO mice [30]. A
novel phenotype of an abnormal adipose tissue amount
(MP:0005452) was predicted in TarGo, and significant
phenotypes were confirmed in IMPC (P = 0.002).
GEM target gene prediction with selected mouse

phenotypes: TarGo identifies highly ranked genes for
user-selected phenotypes using the Fisher exact test in
conjunction with the TrustRank algorithm, allowing the
user to select the target gene for their GEM model
(Fig. 3a).
We performed gene selection using this system by pre-

dicting diabetes and obesity-related genes in mice. Six
MP terms for type 2 diabetes and obesity (MP:0005293
glucose intolerance, MP:0002079 hyperinsulinemia, MP:
0001792 impaired wound healing, MP:0002628 liver
steatosis, MP:0001433 hyperphagia, and MP:0001552
hypertriglyceridemia) were selected from the Jackson La-
boratory (B6 ob and B6 db). Highly associated genes for
the selected phenotypes were predicted by FDR < 0.01.
Finally, six genes (Sec61a1, Insr, Sirt1, Pdpk1, Sin3a, and

Sqstm1) were predicted to be associated with diabetes
and obesity. Four of these genes have been used in
diabetes and obesity studies. Sec61a1-defective mice
have been used as a diabetes model [31]. Insr is a major
risk factor for human obesity and has been widely used
for obesity research [32–34]. Sirt1 loss from adipose
tissue leads to obesity and metabolic dysfunction [35]. In
addition, a Pdpk1-deficient mouse model has demon-
strated the importance of Pdpk1 in pancreatic cell mass
and glucose homeostasis [36]. Phenotypes associated
with diabetes and obesity were not detected for Sin3a
and Sqstm1.
PageRank score calculation for user-specific networks:

Users can prioritize genes according to human disease
associations generated from their own in-house data, in-
creasing their understanding of the genes most affected
by their own networks and/or selecting candidate genes
for network behavior (Fig. 3b).

Discussion
We have constructed a gene-phenotype prediction sys-
tem, TarGo, with a gene interaction network and disease
signatures. We found that many results predicted by

Fig. 3 Contents of the TarGo database. a The user can find the knock out (KO) target gene using the TarGo search system. Known phenotype,
KO mouse state, and high-related phenotype are provided using gene name (blue line). High-associated genes are provided using multiple
phenotype selection (red line). b The user can analyze gene rank using in-house data. The researcher can also use various in-house data,
including gene sets from the Omics approach or empirical knowledge. Therefore, the user can regenerate gene rank with user-defined gene sets
or network (green line)
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TarGo matched the preliminary IMPC phenotyping data.
TarGo can, therefore, be used to suggest candidate tar-
get genes for research using human disease models.

Conclusion
This new data will be extremely valuable for understand-
ing human diseases and related phenotypes. It is crucial
that the large volumes of data are regularly updated, as
they are sourced from many biological databases.

Materials and methods
Gene-phenotype association by the TSPR score
Using the TSPR algorithm alongside the hyperlink matrix
and weight matrix as populated above, we predict gene-
phenotype association rankings. We construct a two-part
pipeline. The first part was the calculation of gene-disease
(or phenotype) rank with TSPR, and the second part semi-
automatically separated out useful genes using TrustRank.
The TSPR score was calculated as follows:

TSPR ¼ dð Þ Pr þ 1−dð Þpa pa ¼
1
t j
; i∈t j

o; i∉t j

8
<

:

9
=

;

The dumping factor, d = 0.85, is the probability that a
node would move to a different node [37]. Pr is the sum
of hyperlink matrix and dangling matrix. tj is the set of
annotated genes in phenotype j. If gene i is annotated in
phenotype j, the value of weight matrix pa is 1/|tj|, and
|tj| was the number of annotated genes in phenotype j. If
gene i is not annotated in phenotype j, the value of pa is
0. The weight matrix p introduced bias in all iterations
of the TSPR computation. The TSPR score/matrix is the
sum of all contributions made by nodes linking to it.
We applied TrustRank to decrease false positives in

the prediction result. Gyöngyi and researchers proposed
TrustRank to separate useful webpages from spam [14].
Using manual identification of reputable pages, this
method identified other pages that were likely to be
trustworthy based on their connectivity with the reput-
able pages. Highly related genes for a particular pheno-
type are normalized using the TrustRank score [14]. The
TrustRank score is calculated as follows:

TrustRank ¼ d� Pr� tþ 1‐dð Þ
� gd t ¼ TrustRank score vectorð Þ:

The vector for good seeds, gd, represented the number of
highly ranked genes annotated for a particular phenotype.
We selected seed genes that ranked highly on their TSPR
score. In this study, we selected the top 3000 seed genes.
The seed gene, i, is a defined signature gene for a particular
phenotype. If gene i is a good seed gene for that phenotype,
then the value of the non-uniform vector gd would be 1/

|gd|, where |gd| is the number of good seed genes. If gene i
was not a good seed, then the value would be 0.
We predicted the association for gene-phenotype using

both the TSPR and TrustRank algorithms. A high-
ranked gene in the prediction result is highly related
with a particular phenotype and closely interacted with
signature genes. To calculate the association for gene-
phenotype, we selected phenotypes that interacted with
more than 10 signature genes.
Using Spammass, we measure the impact of good seed

links on the ranking. The Spammass score is used as an
indicator of reliability or confidence for the gene ranking
scores. The Spammass score is calculated as 1-(Trus-
tRank/TSPR). If the Spammass score is < 0, the gene’s
rank is elevated by good seeds. If the Spammass score is
> 0, the gene rank is elevated by an unrelated gene.
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