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Abstract

To date, researchers have developed various animal models of Alzheimer’s disease (AD) to investigate its
mechanisms and to identify potential therapeutic treatments. A widely recognized model that mimics the
pathology of human sporadic AD involves intracerebroventricular (ICV) injection with streptozotocin (STZ). However,
ICV injections are an invasive approach, which creates limitations in generalizing the results. In this study, we
produced a rodent model of AD using STZ (3 mg/kg) injection via the cisterna magna (CM) once every week for 4
weeks, and analyzed at 4 weeks and 16 weeks after final injection. In the CM-STZ rodent model of AD, we observed
increase in extracellular amyloid-beta (Aβ) deposition and decrease and abnormal morphology of post-synaptic
protein, PSD95 in 16 weeks STZ-injected group. The model developed using our less-invasive method induced
features of AD-like pathology, including significantly increased extracellular amyloid-beta deposition, and decreased
synaptic protein in the hippocampus. These findings supporting the success of this alternative approach, and thus,
we suggest this is a promising, less invasive model for use in future AD research.
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Introduction
Alzheimer’s disease (AD) is the most common neurode-
generative disorder causing dementia [1]. AD is patho-
logically characterized by amyloid-beta (Aβ) plaques,
neuronal loss, and cognitive impairment [2]. Considerable
research has been performed to develop AD models and
conduct preclinical studies to investigate the mechanisms
underlying AD and potential treatment options [3].

Streptozotocin (STZ) is a diabetogenic compound able
to induce insulin-resistant cells similar to sporadic AD
neural cells [4]. Therefore, intracerebroventricular (ICV)
injection with STZ is used to mimic the pathology of hu-
man sporadic AD [5]. However, a major disadvantage of
this method is the invasiveness of the ICV injection, which
involves craniotomy and directly damages the brain tissue.
A previous paper confirmed accurate and reproducible ac-
cess to the artificial cerebrospinal fluid (aCSF) of rodents
using a cisterna magna (CM) injection method [6]. Fur-
thermore, the injected molecules diffused into the paren-
chyma, similar to diffusion following ICV injection [7].
In the present study, we produced a rodent model of

AD, using STZ injection via the CM and determined the
development of AD-like pathologies. It was found that this
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model successfully induced AD-like pathological features,
such as extracellular Aβ accumulation and synaptic loss.

Materials and methods
Experimental animals
Male Sprague Dawley rats (460 ± 20 g, 14 weeks old) were
housed in a temperature-controlled room (20–23 °C) with
30–60% humidity in a 12-h light-dark cycle with ad
libitum access to standard food pellets and water. All pro-
cedures were approved by the Korea Research Institute of
Bioscience and Biotechnology Institutional Animal Care
and Use Committee (Approval No. KRIBB-AEC-18016).

CM injection of STZ and brain sampling
For CM injection of STZ, we used a needle-tubing assem-
bly that comprised of PE10 and PE50 tube tubing, 27G
dental needle, PE10/PE50 tubing connector and 22G
Hamilton syringe (Fig. 1b) The rats were anesthetized with
3% isoflurane in an induction chamber and maintained
under isoflurane anesthesia at 2% during injection. STZ
(Sigma-Aldrich, St. Louis, MO, USA) was dissolved in
aCSF and was infused into the CM at a rate of 10 μl / min
(10 μl total volume, final dose 3mg/kg). The needle was
maintained in place for 1 min after injection. Rats received
injections once every week for 4 weeks, before being sacri-
ficed for analysis at acute (4 weeks) and chronic (16 weeks)
time points (Fig. 1a). For tissue sampling, rats were anes-
thetized with 30% urethane and transcardially perfused
with phosphate-buffered saline (PBS). The brain was

dissected, and the hemisphere was used for immunohisto-
chemistry and western blot analysis, respectively.

General health monitoring
Body weight was recorded weekly prior to injections.
Blood glucose levels were measured using Accu-Chek®
Guide meter (Roche, Basel, Switzerland) on the 4 and
16 weeks after the first STZ injection.

Immunohistochemistry
The hemisphere was fixed in 10% neutral buffered for-
malin for 2 days at 4 °C. After dehydrating with 30% su-
crose, the tissues were embedded in optimal cutting
temperature compound, and transverse sections (30 μm)
were serially cut using a cryostat. The sections were then
placed in 88–91% formic acid for antigen retrieval of Aβ.
After blocking using 4% normal horse serum for 2 h,
sections were incubated overnight at 4 °C in diluted
primary antibody for Aβ (6E10; Novus, Plainsboro, NJ,
USA) and PSD95 (Abcam, Cambridge, MA, USA).
Sections were then incubated with biotinylated anti
rabbit-IgG secondary antibody (Vector Laboratories,
Burlingame, CA, USA). The sections were stained with
DAB (3,3′-Diaminobenzidine; Vector Laboratories).

Western blot analysis
The hippocampus was harvested from the hemisphere
and homogenized in RIPA buffer (Thermo Scientific,
Waltham, MA, USA). Proteins lysates were loaded onto

Fig. 1 Experimental design and cisterna puncture method. a A schematic timeline showing CM-STZ injections and subsequent sampling points.
b The needle tubing assembly for CM injections. A 27G dental needle was connected with polyethylene tubes and the terminal of the tube was
linked to 22G Hamilton syringe. c-d The method used for CM injections
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10–16% SDS-PAGE gels, transferred to nitrocellulose
membranes and blocked with blocking buffer (BD
Biosciences, Franklin Lakes, NJ, USA). Membranes were
incubated at 4 °C overnight with primary antibodies
against PSD95 (Abcam) and β-actin (Sigma-Aldrich).
Following washing with TBST (tris-buffered saline with
0.1% tween 20), the membranes were incubated with
secondary antibodies (Cell Signaling, Danvers, MA,
USA) for 1 h at room temperature. Specific binding was
detected using a chemiluminescence detection system
(Bio-Rad, Hercules, CA, USA).

Statistical analysis
The data represent the mean and standard deviation
(SD) from three independent experiments (n = 3).

Statistical significance was determined using two-way
analysis of variance (ANOVA) conducted by GraphPad
Prism 5 software (San Diego, CA, USA).

Results
Change in body weight and blood glucose by CM-STZ
Body weight was reduced in the STZ-injected group
when compared to the aCSF-injected group until 4
weeks. However, after the final injection, body weight
appeared to recover, with no significant difference be-
tween the STZ-injected group and control animals by 8
weeks (Fig. 2a). To analyze the effect of STZ on metab-
olism, we measured blood glucose level at random or in
a fasting state at week 4 and 16. There was no significant

Fig. 2 Change in body weight and blood glucose level by STZ. a Body weight was monitored throughout the experimental period. b-c The level
of blood glucose was measured at random or in a fasting state at week 4 or 16. The data are presented as mean values ± SD (n = 3). **
denotes p < 0.01
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alteration in the average blood glucose level between
aCSF- and STZ-injected groups (Fig. 2b and c).

CM-STZ induced extracellular Aβ accumulation and
synaptic loss
To confirm the presence of Aβ accumulation in CM-
STZ model, we performed immunochemistry using an
Aβ (6E10) antibody in CA3 of the hippocampus. Aβ
accumulation was observed outside of the cells and was
increased in the STZ-injected group at 16 weeks (Fig. 3).
In addition, we analyzed the expression of the post-
synaptic protein PSD95 by western blotting and immu-
nohistochemistry. Although expression levels of PSD95
in the hippocampus were not altered at 4 weeks in the
STZ-injected group, a significant decrease was observed

at 16 weeks when compared to controls (Fig. 4a and b).
Moreover, the morphology of synapse was abnormal in
STZ-injected group (Fig. 4c). These results suggest that
AD-like pathologies were induced by CM-STZ
injection.

Discussion
A common model of sporadic AD involves a ICV-STZ
injection [8]. However, ICV injection is an invasive
procedure involving skin incision and trauma to brain
tissue, which can bring the reliability of results into
question. Therefore, we proposed that CM injection
would be equally effective at inducing AD and overcome
some limitations of the ICV model. The current study
provides evidence that using the CM as an alternative

Fig. 3 Extracellular Aβ in the hippocampal CA3. Representative sections showing Aβ (6E10) expression (brown) in area CA3 of the hippocampus
from aCSF-injected (left; a-c) and STZ-injected (right; d-f) animals. Counterstaining with hematoxylin can be seen in blue. Scale bars = 50 μm. The
lower panels show high-magnified images of the regions indicated by white square in the upper panels, respectively
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site of STZ injection is indeed effective at producing key
pathological features of sporadic AD in a less invasive
manner.
One key pathological finding was the increase in extra-

cellular Aβ and synaptic loss in the CM-STZ model. A
previous study has shown that intracellular Aβ accumu-
lation is increased 3 months after ICV-STZ injection,
and that Aβ plaques are detectable at 6 months [9]. We
did not see plaques in our CM-STZ model, however our
study only extended to 4 months post-STZ injection and
we did observe an increase in extracellular Aβ at this
time point.

Furthermore, PSD95 was reduced in the hippocampus
by CM-STZ injection after 16 weeks, but not at 4 weeks.
Decreases in the expression of post synaptic protein
PSD95 are associated with a decline in learning and
memory function [10], so this corresponds to patho-
logical changes associated with the development of AD
in our model.
Loss of body weight is a common characteristic in AD

patients and ICV-STZ rodents have also been shown to
lose weight without experiencing any change in blood
glucose [11]. In our study, CM-STZ caused weight loss
during the injection period, which recovered to control

Fig. 4 STZ-induced alteration of neuronal synapses in the hippocampal CA1. a-b Expression of PSD95 protein were analyzed by western blots
using brain tissue from aCSF- and STZ-injected animals. c Representative sections showing PSD95 expression in CA1 of the hippocampus from
CSF-injected (left) and STZ-injected (right) animals. The lower panels show high-magnified images of the regions indicated by white square in the
upper panels. Scale bar = 100 μm. The data are presented as mean values ± SD (n = 3). * denotes p < 0.05
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levels following the last injection, with no alteration in
blood glucose.
An additional benefit of CM-STZ injection model is

the ability to administer many injections over time, due
to the reduced invasiveness of the procedure. In our
case, we were able to repeatedly inject STZ into aCSF
for 4 weeks. This approach mitigated the effects of STZ
clearance during aCSF turnover.
In conclusion, we have demonstrated that our CM-

STZ injection method is less-invasive and induces a
similar sporadic AD-like pathology to the ICV-STZ
injection model.

Conclusions
We suggest that the method for producing a sporadic
AD-like rodent model using less-invasive STZ injection
via the CM.
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