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Mouse models for hepatitis B virus research
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Hepatitis B virus (HBV) infection remains a major global health problem; indeed, there are 250 million
carriers worldwide. The host range of HBV is narrow; therefore, few primates are susceptible to HBV
infection. However, ethical constraints, high cost, and large size limit the use of primates as suitable
animal models. Thus, in vivo testing of therapies that target HBV has been hampered by the lack of an
appropriate in vivo research model. To address this, mouse model systems of HBV are being developed
and several are used for studying HBV in vivo. In this review, we summarize the currently available
mouse models, including HBV transgenic mice, hydrodynamic injection-mediated HBV replicon delivery
systems, adeno-associated virus-mediated HBV replicon delivery systems, and human liver chimeric
mouse models. These developed (or being developed) mouse model systems are promising and should
be useful tools for studying HBV.
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More than 250 million people worldwide carry

hepatitis B virus (HBV). These people are prone to

developing liver failure and diseases such as cirrhosis

and hepatocellular carcinoma. Although vaccination and

anti-HBV therapies are available, HBV infection

remains a major global health concern because clearing

the virus from chronic HBV carriers is difficult using

current treatment methods.

HBV is a DNA virus with reverse transcriptional

activity, belonging to the same family (Hepadnaviridae)

as woodchuck hepatitis virus and duck hepatitis B virus

(Figure 1). The infectious HBV virion, also known as the

Dane particle, has a globular structure (approximately 42

nm in diameter) that contains the nucleocapsid [1,2]. The

HBV capsid comprises 120 copies of core protein dimers

[3,4] enclosed within an envelope, which consists of a

lipid bilayer membrane derived from the host cell.

Embedded in this bilayer are three viral surface proteins

(small surface protein [SHB], middle surface protein

[MHB], and large surface protein [LHB]). The nucleo-

capsid harbors a partially double-stranded HBV genome

(approximately 3.2 kB) known as relaxed-circular DNA

(rcDNA) and the viral polymerase (P protein), which is

cross-linked covalently to the rcDNA [5,6].

A major cause of chronic HBV infection is covalently

closed circular DNA (cccDNA), which forms a mini-

chromosome in the host cell nucleus and serves as a

template for viral transcription by host RNA polymerase

[7]. Therefore, strategies targeting cccDNA may form

the basis for developing novel antiviral agents. Recent

studies show that interferon-α or APOBEC3 proteins

reduce the amount of cccDNA [8,9]; however, this is not

sufficient for complete elimination of cccDNA from host

hepatocytes.

HBV infection and development of hepatitis are complex

responses involving many factors. Thus, limited investi-

gations have been undertaken using in vitro systems. The

host range of HBV is narrow; therefore, few primates are

susceptible to HBV infection. Among these, only

chimpanzees are immunocompetent and fully susceptible
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to human HBV [10,11]. They develop both acute and

chronic HBV infection, along with hepatitis and immune

response that are similar to those in humans [12].

However, ethical constraints, large size, and high cost

make chimpanzees unsuitable animal models. Tupaias

can be infected with HBV, but infection is mild and

transient, and viral replication is limited [13]. In

addition, these animals are large and hard to handle.

Thus, small, easy to handle, and well-defined animal

models such as mice are required. Several mouse models

of HBV have been established, and novel mouse models

that enable global assessment of the viral infection

process and efficacy of antiviral agents are being

developed continuously.

The HBV Life Cycle

Entry

The HBV virion attaches to hepatocytes via weak

interaction between the preS1 domain of the LHB

protein on the HBV envelope and heparin sulfate

proteoglycans (HSPGs) on the surface of hepatocytes

[14]. The sodium taurocholate co-transporting polypeptide

(NTCP) on the host cell surface, which is a receptor for

HBV entry [15], allows the HBV virion to pass through

the plasma membrane via clathrin-mediated endocytosis

[16]. However, the detailed molecular mechanisms

underlying the entry process are still not fully

understood.

Uncoating

After endocytosis, the nucleocapsid is released from

the viral envelope and transported to the nucleus. The

underlying process is unclear; however, one possible

mechanism is that the arginine-rich C-terminal domain

of the core protein may provide a transport signal to a

nuclear pore. Also, the nucleocapsid is degraded at the

nuclear pore complex, whereupon it releases the rcDNA,

which then enters the nucleus [17].

Formation of cccDNA

In the nucleus, rcDNA is transcribed to cccDNA. First,

HBV polymerase is released from the 5' terminus of the

minus rcDNA strand and the RNA primer is removed

from the 5' terminus of the plus strand. Host DNA

polymerase κ (POLK) and other DNA polymerases fill

the gap in the plus strand [18]. The host DNA repair

machinery, such as tyrosyl-DNA phosphodiesterase 2

(TDP2), plays a role in this process [19], although other

as-yet-unknown host cellular factors are also involved.

The cccDNA is maintained in the nucleus of host

hepatocytes as a stable episome, which forms a

Figure 1. Schematic illustration of the life cycle of HBV.
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minichromosome by associating with histones and non-

histone proteins [7].

Transcription and translation

The cccDNA serves as a template for transcription of

viral mRNAs by host cellular RNA polymerase 2

[20,21]. There are four different HBV mRNAs, which

differ in length. The longest mRNA, a 3.5 kB pregenomic

RNA (pgRNA), encodes the polymerase protein and the

precore/core protein. A 2.4 kB preS mRNA encodes the

LHB and MHB proteins, and a 2.1 kB S mRNA encodes

the SHB protein. In addition, a 0.7 kB X mRNA encodes

the X protein. Transcription of these four transcripts

initiates at distinct promoters, but all have overlapping 3'

termini. Four promoters and two enhancers play roles in

transcription: the core, PreS, S, and X promoters, and

enhancers 1 and 2. All four transcripts have 5' cap

structures and 3' poly-A tails.

Packaging and synthesis of viral genomic DNA

pgRNA serves as a precursor for synthesis of HBV

genomic DNA. Encapsidation is triggered by binding of

HBV polymerase to the ε-stem loop structure of the

pgRNA 5' terminal region in the cytoplasm [22-24].

Because pgRNA is terminally redundant, the stem loop

structure is also present at the 3' terminus; however, the

polymerase also recognizes the 5' cap structure [25].

Therefore, only the 5' ε-stem loop can serve as an

encapsidation signal. After binding the polymerase protein,

core proteins are recruited for capsid assembly, and

pgRNA and polymerase are encapsidated. Next, using

pgRNA as a template, the minus strand of rcDNA is

synthesized by the reverse transcriptase activity of HBV

polymerase [26]. The N-terminal TP domain of HBV

polymerase has a tyrosine (Y63) residue that acts as a

protein primer for polymerization of minus-strand DNA

[6,27]. After this step, most of the pgRNA template is

degraded by the RNase H domain of HBV polymerase,

leaving only a small fragment of RNA. The remaining

RNA fragment is used as a primer for synthesis of plus-

strand DNA [28], resulting in rcDNA synthesis in the

nucleocapsid.

Assembly and secretion

The nucleocapsid moves to the endoplasmic reticulum

(ER), where the surface proteins (SHB, MHB, and LHB)

are embedded into the membrane [29,30]. Enveloped

HBV (the Dane particle) is formed in the lumen of the

ER and released from the cell through secretory

pathways and budding. In addition, two kinds of subviral

particle, spherical and filamentous, are secreted from the

cell. These do not have a viral nucleocapsid and

comprise the viral envelope itself.

Murine Models of HBV

The HBV transgenic mouse

Initially, transgenic mice expressing each viral protein

were constructed [31-35]. These mice were used to

evaluate the virology and oncogenic potential of each

viral protein. Thereafter, transgenic mice expressing the

complete HBV replicon were generated; this model

produces infectious virions [36] and made it possible to

test the efficacy of antiviral agents such as HBV inhibitors,

small interfering RNAs (siRNAs), and cytokines in vivo

[37-40]. Since HBV transgenic mice are immune tolerant

and HBV pathogenesis proceeds via host adaptive

immune responses, the mice do not suffer hepatitis/liver

injury or clear the virus. This means that HBV viral

proteins or HBV itself is not cytopathic; in addition,

HBV-specific cytotoxic T lymphocytes (CTLs) cause

acute liver disease when adoptively transferred to these

HBV transgenic mice [41]. Thus, studies examining the

mechanism(s) underlying infection or cccDNA synthesis

are not suited to this model. Since the murine hepatocytes

do not express HBV-specific receptors, making intrahepatic

infection or spread of HBV impossible, no cccDNA is

formed within murine hepatocytes. The inability to clear

HBV means that alternative immunocompetent mouse

models are required.

Mouse model developed by hydrodynamic injection

of HBV replicons

This mouse model is based on immunocompetent

mice; therefore, pathogenesis and host immune responses

against HBV can be observed [42,43]. The HBV

replicons are transferred to the mouse liver by injecting

a large volume of naked DNA into the tail vein. This

DNA is transiently expressed by hepatocytes. Viral

replication remains at high levels until Day 7 post-

transfection, at which time it starts to decline as HBV-

specific antiviral antibodies and CTLs begin to emerge;

these are key effectors for viral clearance, which is

supported by CD4+ T cells and natural killer cells [42].

This mouse model is used to test antiviral agents such as

short hairpin RNAs (shRNAs) and HBV genome-
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specific guide RNA (gRNA)-mediated clustered regularly

interspaced short palindromic repeats (CRISPR)/Cas9

systems [44,45]. Recently, the model was used for

research into recombinant cccDNA (rcccDNA), which is

derived from hydrodynamic-injected HBV minicircle

DNA and mimics cccDNA [46].

Mouse model developed by adeno-associated virus-

mediated transduction of HBV replicons

This model, which is based on viral transduction by

intravenously injected adeno-associated virus (AAV),

allows more efficient and homogeneous transduction of

the liver than the hydrodynamic injection model [42,47],

in which only 5-10% of hepatocytes are transfected;

indeed, more than half of murine hepatocytes in the

AAV model express HBcAg [47]. In contrast to the

hydrodynamic injection model, this model mimics

chronic HBV infection [47]. AAV infection does not

induce some types of immune response, and the murine

immune system is tolerant to HBV antigens; therefore,

HBV persistence is established in injected immuno-

competent mice. Due to immune tolerance to HBV, this

mouse model can be used to develop anti-HBV vaccines

[47,48].

Human liver chimeric mouse models

Since mice are not a natural host for HBV, it is not

possible to study the entire infection process (from viral

entry to cccDNA synthesis and intrahepatic spread) in

transgenic or HBV replicon-delivered mice. Therefore, a

human liver chimeric mouse model is required.

The first such model was the trimera mouse model,

which was established by transplanting HBV-infected

human liver fragments under the kidney capsule of

lethally irradiated immunodeficient mice [49]. This mouse

model has been used to test several antiviral agents;

however, since transplanted xenogeneic human hepatocytes

do not remain intact for a long time, other models have

been developed in which human liver cells are stably

engrafted.

The most widely used human liver chimeric mouse

model is the albumin-urokinase-type plasminogen activator

(alb-uPA)/severe combined immunodeficiency (SCID)

mouse [50]. When driven by a liver-specific albumin

promoter, uPA is overexpressed and results in subacute

liver failure [51]. After backcrossing alb-uPA mice with

immunodeficient mice (e.g., SCID or recombination

activating gene 2 [RAG2] knockout mice), human

hepatocytes are introduced via intra-splenic injection.

Next, the small numbers of hepatocytes that reach the

injured liver proliferate and repopulate it. The engrafted

human hepatocytes are then maintained stably [52].

However, this mouse model has several drawbacks,

including infertility, potential fatal bleeding, and kidney

disorders [53,54]. An alternative human liver chimeric

mouse model is the triple knockout FAH-/-RAG2-/-

IL2RG-/- (FRG) mouse [55]. This model is generated by

crossing fumarylacetoacetate hydrolase (FAH) knockout

mice with double immunodeficient RAG2-/-interleukin 2

receptor γ chain (IL2RG)-/- mice. FAH is an enzyme

essential for tyrosine metabolism; knocking out FAH

leads to accumulation of fumarylacetoacetate in hepatocytes.

This compound is toxic to hepatocytes and causes injury

[56]. Accumulation of toxic metabolites can be prevented

by administration of 2-(2-nitro-4-trifluoro-methylbenzoyl)-

1,3-cyclohexanedione (NTBC) prior to transplantation.

NTBC is withdrawn upon intra-splenic injection of

human hepatocytes. The injected human hepatocytes

then repopulate the mouse liver and persist over a period

of 6 months [57]. Because human liver chimeric mice

are susceptible to HBV infection and cccDNA is formed

in transplanted hepatocytes, these models can be used to

study viral infection, spread, and the nature of cccDNA.

However, immunodeficiency makes these mice unsuitable

for study of immune responses induced by HBV or

vaccine development.

Conclusions

Here, we discuss the current knowledge base regarding

the HBV life cycle and available mouse models (Figure

2 and Table 1). Each step of HBV infection can be

targeted by compounds such as mycludex B (an entry

inhibitor), APOBEC3 protein or CRISPR/Cas9 (cccDNA

inhibitors), siRNAs (viral mRNA inhibitors), entecavir

or tenofovir (reverse transcription inhibitors), and BAY

41-4109 (a core protein assembly inhibitor) [9,37,38,

40,44,45,58-61]. However, complete elimination of

cccDNA, a key treatment for chronic hepatitis B patients,

has not yet been achieved. Development of transgenic

and hydrodynamic injection or AAV transduction-mediated

replicon delivery model mice allows elucidation of the

mechanism(s) underlying the viral life cycle. Also,

human liver chimeric mouse models allow examination

of viral infection pathways, cccDNA formation, and

their sequelae. However, these human liver chimeric
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mice are immunodeficient. Therefore, to overcome this

limitation, immunocompetent human liver chimeric

mouse models equipped with human livers and human

immune systems have been developed. Examples include

albumin promoter-driven-FK506-binding protein-caspase

8 fusion protein (AFC8)-CD34+ human hematopoietic

stem cell (hu HSC)/hepatocyte progenitor (Hep) mice

and HLA-A2 (A2)/non-obese diabetic SCID IL2RG-/-

(NSG)-hu HSC/Hep mice [62,63]. However, these mice

do not harbor a complete human immune system. Studies

of immunopathogenesis, development of novel vaccines,

and more comprehensive analyses are feasible if robust

dual humanized chimeric mouse models can be generated.

This will be one of the most important contributions to

HBV research.
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Figure 2. Schematic illustration of the different mouse models of HBV.

Table 1. Comparison of the different mouse models

Mouse models Advantages Disadvantages

HBV transgenic Virologic study on HBV replication
No infection
No cccDNA

Hydrodynamic
injection

Immunocompetent
Acute infection model

No infection
No cccDNA
Relatively lower efficiency
Transient replication

AAV-mediated
transduction

Immunocompetent
Chronic infection model
Relatively longer replication

No infection
No cccDNA
Transient replication

Human liver chimeric
Susceptible to HBV infection
cccDNA formation

Immune deficient
High cost
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