Skip to main content

Spontaneous and transgenic rodent models of inflammatory bowel disease

Abstract

Inflammatory Bowel Disease (IBD) is a multifactorial disorder with many different putative influences mediating disease onset, severity, progression and diminution. Spontaneous natural IBD is classically expressed as Crohn’s Disease (CD) and Ulcerative Colitis (UC) commonly found in primates; lymphoplasmocytic enteritis, eosinophilic gastritis and colitis, and ulcerative colitis with neuronal hyperplasia in dogs; and colitis in horses. Spontaneous inflammatory bowel disease has been noted in a number of rodent models which differ in genetic strain background, induced mutation, microbiota influences and immunopathogenic pathways. Histological lesions in Crohn’s Disease feature non-caseating granulomatous inflammation while UC lesions typically exhibit ulceration, lamina propria inflammatory infiltrates and lack of granuloma development. Intestinal inflammation caused by CD and UC is also associated with increased incidence of intestinal neoplasia. Transgenic murine models have determined underlying etiological influences and appropriate therapeutic targets in IBD. This literature review will discuss current opinion and findings in spontaneous IBD, highlight selected transgenic rodent models of IBD and discuss their respective pathogenic mechanisms. It is very important to provide accommodation of induced putative deficits in activities of daily living and to assess discomfort and pain levels in the face of significant morbidity and/or mortality in these models. Epigenetic, environmental (microbiome, metabolome) and nutritional factors are important in IBD pathogenesis, and evaluating ways in which they influence disease expression represent potential investigative approaches with the greatest potential for new discoveries.

References

  1. 1.

    Beatty PL. MUC1 in the relationship between inflammation and cancer in IBD. Dissertation, University of Pittsburgh 2006

    Google Scholar 

  2. 2.

    Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol 2010; 28: 573–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Weaver CT, Elson CO, Fouser LA, Kolls JK. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annu Rev Pathol 2013; 8: 477–512.

    Article  CAS  Google Scholar 

  4. 4.

    Tomasello G, Tralongo P, Damiani P, Sinagra E, Di Trapani B, Zeenny MN, Hussein IH, Jurjus A, Leone A. Dismicrobism in inflammatory bowel disease and colorectal cancer: changes in response of colocytes. World J Gastroenterol 2014; 20(48): 18121–18130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Hajj-Hussein IA, Jurjus R, Saliba J, Ghanem S, Diab R, Bou Assi T, Daouk H, Leone A, Jurjus A. Modulation of Beta2 and Beta3 integrins in experimental colitis induced by iodoacetamide and enteropathogenic E. coli. J Biol Regul Homeost Agents 2013; 27(2): 351–363.

    CAS  PubMed  Google Scholar 

  6. 6.

    Khanna PV, Shih DQ, Haritunians T, McGovern DP, Targan S. Use of animal models in elucidating disease pathogenesis in IBD. Semin Immunopathol 2014; 36(5): 541–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Li Y, de Haar C, Chen M, Deuring J, Gerrits MM, Smits R, Xia B, Kuipers EJ, van der Woude CJ. Disease-related expression of the IL6/STAT3/SOCS3 signalling pathway in ulcerative colitis and ulcerative colitis-related carcinogenesis. Gut 2010; 59(2): 227–235.

    Article  CAS  Google Scholar 

  8. 8.

    Monteleone G, Pallone F, Stolfi C. The dual role of inflammation in colon carcinogenesis. Int J Mol Sci 2012; 13(9): 11071–11084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Neurath MF. Animal models of inflammatory bowel diseases: illuminating the pathogenesis of colitis, ileitis and cancer. Dig Dis 2012; 30: 91–94.

    Article  Google Scholar 

  10. 10.

    Kolodziejska-Sawerska A, Rychlik A, Depta A, Wdowiak M, Nowicki M, Kander M. Cytokines in canine inflammatory bowel disease. Pol J Ve t Sci 2013; 16(1): 165–171.

    Article  CAS  Google Scholar 

  11. 11.

    Wdowiak M, Rychlik A, Koodziejska-Sawerska A. Biomarkers in canine inflammatory bowel disease diagnostics. Pol J Vet Sci 2013; 16(3): 601–610.

    Article  CAS  Google Scholar 

  12. 12.

    García-Sancho M, Rodríguez-Franco F, Sainz A, Mancho C, Rodríguez A. Evaluation of clinical, macroscopic, and histopathologic response to treatment in nonhypoproteinemic dogs with lymphocytic-plasmacytic enteritis. J Ve t Intern Med 2007; 21(1): 11–17.

    Article  Google Scholar 

  13. 13.

    Day MJ, Bilzer T, Mansell J, Wilcock B, Hall EJ, Jergens A, Minami T, Willard M, Washabau R; World Small Animal Veterinary Association Gastrointestinal Standardization Group. Histopathological standards for the diagnosis of gastrointestinal inflammation in endoscopic biopsy samples from the dog and cat: a report from the World Small Animal Veterinary Association Gastrointestinal Standardization Group. J Comp Pathol 2008; 138: S1–S43.

    Article  Google Scholar 

  14. 14.

    Whitley NT, Day MJ. Immunomodulatory drugs and their application to the management of canine immune-mediated disease. J Small Anim Pract 2011; 52(2): 70–85.

    Article  CAS  Google Scholar 

  15. 15.

    Kaikkonen R, Niinistö K1, Sykes B, Anttila M, Sankari S, Raekallio M. Diagnostic evaluation and short-term outcome as indicators of long-term prognosis in horses with findings suggestive of inflammatory bowel disease treated with corticosteroids and anthelmintics. Acta Vet Scand 2014; 56: 35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Kanthaswamy S, Elfenbein HA, Ardeshir A, Ng J, Hyde D, Smith DG, Lerche N. Familial aggregation of chronic diarrhea disease (CDD) in rhesus macaques (Macaca mulatta). Am J Primatol 2014; 76(3): 262–270.

    Article  Google Scholar 

  17. 17.

    Over K, Crandall PG, O’Bryan CA, Ricke SC. Current perspectives on Mycobacterium avium subsp. paratuberculosis, Johne’s disease, and Crohn’s disease: a review. Crit Rev Microbiol 2011; 37(2): 141–156.

    Article  Google Scholar 

  18. 18.

    Jurjus AR, Khoury NN, Reimund JM. Animal models of inflammatory bowel disease. J Pharmacol Toxicol Methods 2004; 50(2): 81–92.

    Article  CAS  Google Scholar 

  19. 19.

    Khan J and Islam MN. Morphology of the intestinal barrier in different physiological and pathological conditions. In: Histopathology-Reviews and Recent Advances. Intech Publishers, Rijeka, Croatia; 2012 pp 133–152

    Google Scholar 

  20. 20.

    Reimund JM, Tavernier M, Viennot S, Hajj Hussein IA, Dupont B, Justum A-PM, Jurus AR, Freund JN and Lechevrel M. Ulcerative colitis-associated colorectal cancer prevention by 5-Aminosalicylates: current status and perspectives. In: Intech Publishers, Rijeka, Croatia; www.inotechopen.com

  21. 21.

    DeVoss J, Diehl L. Murine models of inflammatory bowel disease (IBD): challenges of modeling human disease. Toxicol Pathol 2014; 42(1): 99–110.

    Article  Google Scholar 

  22. 22.

    Pizarro TT, Arseneau KO, Cominelli F. Lessons from genetically engineered animal models XI. Novel mouse models to study pathogenic mechanisms of Crohn’s disease. Am J Physiol Gastrointest Liver Physiol 2000; 278(5): G665–G669.

    Article  CAS  Google Scholar 

  23. 23.

    Goretsky T, Dirisina R, Sinh P, Mittal N, Managlia E, Williams DB, Posca D, Ryu H, Katzman RB, Barrett TA. p53 mediates TNF-induced epithelial cell apoptosis in IBD. Am J Pathol 2012; 181(4): 1306–1315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Li Z, Arijs I, De Hertogh G, Vermeire S, Noman M, Bullens D, Coorevits L, Sagaert X, Schuit F, Rutgeerts P, Ceuppens JL, Van Assche G. Reciprocal changes of Foxp3 expression in blood and intestinal mucosa in IBD patients responding to infliximab. Inflamm Bowel Dis 2010; 16(8): 1299–1310.

    Article  CAS  Google Scholar 

  25. 25.

    Abraham C, Cho JH. IL-23 and autoimmunity: new insights into the pathogenesis of inflammatory bowel disease. Annu Rev Med 2009; 60: 97–110.

    Article  CAS  Google Scholar 

  26. 26.

    Gilbert S, Zhang R, Denson L, Moriggl R, Steinbrecher K, Shroyer N, Lin J, Han X. Enterocyte STAT5 promotes mucosal wound healing via suppression of myosin light chain kinase-mediated loss of barrier function and inflammation. EMBO Mol Med 2012; 4(2): 109–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Gad M. Regulatory T cells in experimental colitis. Curr Top Microbiol Immunol 2005; 293: 179–208.

    CAS  PubMed  Google Scholar 

  28. 28.

    Mizoguchi A and Andoh A. Animal models of inflammatory bowel disease for drug discovery. Chapter 22, In: Animal Models of the Study of Human Disease. Elsevier Publishers 2013; pp 499–527.

    Google Scholar 

  29. 29.

    Parlato M, Yeretssian G2. NOD-like receptors in intestinal homeostasis and epithelial tissue repair. Int J Mol Sci 2014; 15(6): 9594–9627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Strober W, Murray PJ, Kitani A, Watanabe T. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol 2006; 6(1): 9–20.

    Article  CAS  Google Scholar 

  31. 31.

    Denzel A, Horejsi V, Hayday A. The 5th EFIS Tatra Immunology Conference on ‘Molecular determinants of T cell immunity’ held in the High Tatra Mountains, Slovakia, September 7–11, 2002. Immunol Lett 2003; 86(1): 1–6

    Article  CAS  Google Scholar 

  32. 32.

    Hajj Hussein IA, Tohme R, Barada K, Mostafa MH, Freund JN, Jurjus RA, Karam W, Jurjus A. Inflammatory bowel disease in rats: bacterial and chemical interaction. World J Gastroenterol 2008; 14(25): 4028–4039

    Article  CAS  Google Scholar 

  33. 33.

    Mizoguchi A, Mizoguchi E. Animal models of IBD: linkage to human disease. Curr Opin Pharmacol 2010; 10(5): 578–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Lee JC and Parkes M. 100 genes for IBD...whatever next!? Inflammatory Bowel Disease Monitor 2011; 11(3): 103–111.

    Google Scholar 

  35. 35.

    Cho JH, Abraham C. Inflammatory bowel disease genetics: Nod2. Annu Rev Med 2007; 58: 401–416.

    Article  CAS  Google Scholar 

  36. 36.

    Inohara, Chamaillard, McDonald C, Nuñez G. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 2005; 74: 355–383.

    Article  CAS  Google Scholar 

  37. 37.

    Palacios-Rodríguez Y, García-Laínez G, Sancho M, Gortat A, Orzáez M, Pérez-Payá E. Polypeptide modulators of caspase recruitment domain (CARD)-CARD-mediated protein-protein interactions. J Biol Chem 2011; 286(52): 44457–44466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Wilmanski JM, Petnicki-Ocwieja T, Kobayashi KS. NLR proteins: integral members of innate immunity and mediators of inflammatory diseases. J Leukoc Biol 2008; 83(1): 13–30

    Article  CAS  Google Scholar 

  39. 39.

    Netea MG, Van der Graaf C, Van der Meer JW, Kullberg BJ. Recognition of fungal pathogens by Toll-like receptors. Eur J Clin Microbiol Infect Dis 2004; 23(9): 672–676.

    Article  CAS  Google Scholar 

  40. 40.

    Oshiumi H, Matsuo A, Matsumoto M, Seya T. Pan-vertebrate tolllike receptors during evolution. Curr Genomics 2008; 9(7): 488–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Hallman M, Rämet M, Ezekowitz RA. Toll-like receptors as sensors of pathogens. Pediatr Res 2001; 50(3): 315–321.

    Article  CAS  Google Scholar 

  42. 42.

    Carty M, Bowie AG. Recent insights into the role of Toll-like receptors in viral infection. Clin Exp Immunol 2010; 161(3): 397–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Li P, Neubig RR, Zingarelli B, Borg K, Halushka PV, Cook JA, Fan H. Toll-like receptor-induced inflammatory cytokines are suppressed by gain of function or overexpression of Gα(i2) protein. Inflammation 2012; 35(5): 1611–1617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Bleich A, Hansen AK. Time to include the gut microbiota in the hygienic standardisation of laboratory rodents. Comp Immunol Microbiol Infect Dis 2012; 35(2): 81–92.

    Article  Google Scholar 

  45. 45.

    Wirtz S, Neurath MF. Mouse models of inflammatory bowel disease. Adv Drug Deliv Rev 2007; 59(11): 1073–1083.

    Article  CAS  Google Scholar 

  46. 46.

    Goyal N, Rana A, Ahlawat A, Bijjem KR, Kumar P. Animal models of inflammatory bowel disease: a review. Inflammo-pharmacology 2014; 22(4): 219–233.

    Article  Google Scholar 

  47. 47.

    Bilsborough J and Viney JL Expert Opinion In Drug Discovery 2007; 1(1): 69–83.

    Article  Google Scholar 

  48. 48.

    Siddiqui KR, Laffont S, Powrie F. E-cadherin marks a subset of inflammatory dendritic cells that promote T cell-mediated colitis. Immunity 2010; 32(4): 557–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Bassaganya-Riera J, DiGuardo M, Climent M, Vives C, Carbo A, Jouni ZE, Einerhand AW, O’Shea M, Hontecillas R. Activation of PPARy and 8 by dietary punicic acid ameliorates intestinal inflammation in mice. Br J Nutr 2011; 106 (6): 878–886.

    Article  CAS  Google Scholar 

  50. 50.

    Nguyen DD, Esteon MA, Muthyupalani S, Mobley MW, Potter AF, Taylor NS, Snapper SB, Fox JG. Helicobacter is required for colitis in WASP-deficient mice and induces colon cancer. Gastroenterology 2010; 138(5), Supplement 1 pp S5579–5580.

    Google Scholar 

  51. 51.

    Hahm KB, Im YH, Parks TW, Park SH, Markowitz S, Jung HY, Green J, Kim SJ. Loss of transforming growth factor beta signalling in the intestine contributes to tissue injury in inflammatory bowel disease. Gut 2001; 49(2): 190–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Hahm KB, Lee KM, Kim YB, Hong WS, Lee WH, Han SU, Kim MW, Ahn BO, Oh TY, Lee MH, Green J, Kim SJ. Conditional loss of TGF-beta signalling leads to increased susceptibility to gastrointestinal carcinogenesis in mice. Aliment Pharmacol Ther 2002; 16 Suppl 2: 115–127.

    Article  CAS  Google Scholar 

  53. 53.

    Seamons A, Treuting PM, Brabb T, Maggio-Price L. Characterization of dextran sodium sulfate-induced inflammation and colonic tumorigenesis in Smad3(-/-) mice with dysregulated TGFβ. PLoS One 2013; 8(11): e79182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Kang SS, Bloom SM, Norian LA, Geske MJ, Flavell RA, Stappenbeck TS, Allen PM. An antibiotic-responsive mouse model of fulminant ulcerative colitis. PLoS Med 2008; 5(3): e41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Spencer SD, Di Marco F, Hooley J, Pitts-Meek S, Bauer M, Ryan AM, Sordat B, Gibbs VC, Aguet M. The orphan receptor CRF2-4 is an essential subunit of the interleukin 10 receptor. J Exp Med 1998; 187(4): 571–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Keffer J, Probert L, Cazlaris H, Georgopoulos S, Kaslaris E, Kioussis D, Kollias G. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J 1991; 10(13): 4025–4031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 1999; 10(3): 387–398.

    Article  CAS  Google Scholar 

  58. 58.

    Kontoyiannis D, Boulougouris G, Manoloukos M, Armaka M, Apostolaki M, Pizarro T, Kotlyarov A, Forster I, Flavell R, Gaestel M, Tsichlis P, Cominelli F, Kollias G. Genetic dissection of the cellular pathways and signaling mechanisms in modeled tumor necrosis factor-induced Crohn’s-like inflammatory bowel disease. J Exp Med 2002; 196(12): 1563–1574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Hale LP, Greer PK. A novel murine model of inflammatory bowel disease and inflammation-associated colon cancer with ulcerative colitis-like features. PLoS One 2012; 7(7): e41797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Strober W, Nakamura K, Kitani A. The SAMP1/Yit mouse: another step closer to modeling human inflammatory bowel disease. J Clin Invest 2001; 107(6): 667–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Mitsuyama K, Matsumoto S, Rose-John S, Suzuki A, Hara T, Tomiyasu N, Handa K, Tsuruta O, Funabashi H, Scheller J, Toyonaga A, Sata M. STAT3 activation via interleukin 6 trans-signalling contributes to ileitis in SAMP1/Yit mice. Gut 2006; 55(9): 1263–1269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Pizarro TT, Pastorelli L, Bamias G, Garg RR, Reuter BK, Mercado JR, Chieppa M, Arseneau KO, Ley K, Cominelli F. SAMP1/YitFc mouse strain: a spontaneous model of Crohn’s disease-like ileitis. Inflamm Bowel Dis 2011; 17(12): 2566–2584.

    Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Mueller C. Tumour necrosis factor in mouse models of chronic intestinal inflammation. Immunology 2002; 105(1): 1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Williams HR, Cox IJ, Walker DG, Cobbold JF, Taylor-Robinson SD, Marshall SE, Orchard TR. Differences in gut microbial metabolism are responsible for reduced hippurate synthesis in Crohn’s disease. BMC Gastroenterol 2010; 10: 108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Nguyen DD, Esteon MA, Muthyupalani S, Mobley MW, Potter AF, Taylor NS, Snapper SB and Fox JG. Helicobacter is required for colitis in WASP-deficient mice and induces colon cancer. Gastroenterology 2010; 138(5), Supplement 1: S5579–5580.

    Google Scholar 

  66. 66.

    Milia AF, Ibba-Manneschi L, Manetti M, Benelli G, Messerini L, Matucci-Cerinic M. HLA-B27 transgenic rat: an animal model mimicking gut and joint involvement in human spondyloarthritides. Ann N Y Acad Sci 2009; 1173: 570–574.

    Article  CAS  Google Scholar 

  67. 67.

    Koleva PT, Valcheva RS, Sun X, Gänzle MG, Dieleman LA. Inulin and fructo-oligosaccharides have divergent effects on colitis and commensal microbiota in HLA-B27 transgenic rats. Br J Nutr 2012; 108(9): 1633–1643

    Article  CAS  Google Scholar 

  68. 68.

    McGuckin MA, Eri RD, Das I, Lourie R, Florin TH. ER stress and the unfolded protein response in intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 2010; 298(6): G820–G832

    Article  CAS  Google Scholar 

  69. 69.

    Buchholz BM, Billiar TR, Bauer AJ. Dominant role of the MyD88-dependent signaling pathway in mediating early endotoxin-induced murine ileus. Am J Physiol Gastrointest Liver Physiol 2010; 299(2): G531–G538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Gibson DL, Montero M, Ropeleski MJ, Bergstrom KS, Ma C, Ghosh S, Merkens H, Huang J, Månsson LE, Sham HP, McNagny KM, Vallance BA. Interleukin-11 reduces TLR4-induced colitis in TLR2-deficient mice and restores intestinal STAT3 signaling. Gastroenterology 2010; 139(4): 1277–1288.

    Article  CAS  Google Scholar 

  71. 71.

    Majumdar D, Tiernan JP, Lobo AJ, Evans CA, Corfe BM. Keratins in colorectal epithelial function and disease. Int J Exp Pathol 2012; 93(5): 305–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Zhao F, Edwards R, Dizon D, Afrasiabi K, Mastroianni JR, Geyfman M, Ouellette AJ, Andersen B, Lipkin SM. Disruption of Paneth and goblet cell homeostasis and increased endoplasmic reticulum stress in Agr2-/- mice. Dev Biol 2010; 338(2): 270–279.

    Article  CAS  Google Scholar 

  73. 73.

    Park SW, Zhen G, Verhaeghe C, Nakagami Y, Nguyenvu LT, Barczak AJ, Killeen N, Erle DJ. The protein disulfide isomerase AGR2 is essential for production of intestinal mucus. Proc Natl Acad Sci U S A 2009; 106 (17): 6950–6955.

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    O’Gorman S, Dagenais NA, Qian M, Marchuk Y. Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc Natl Acad Sci U S A 1997; 94(26): 14602–14607.

    Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Badea TC, Wang Y, Nathans J. A noninvasive genetic/pharmacologic strategy for visualizing cell morphology and clonal relationships in the mouse. J Neurosci 2003; 23(6): 2314–2322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Garcia EL, Mills AA. Getting around lethality with inducible Cre-mediated excision. Semin Cell Dev Biol 2002; 13(2): 151–158.

    Article  CAS  Google Scholar 

  77. 77.

    Ryu H, Posca D, Barrett T. Bin1: a new player in IBD barrier dysfunction. Dig Dis Sci 2012; 57(7): 1751–1753.

    Article  Google Scholar 

  78. 78.

    Alonzi T, Newton IP, Bryce PJ, Di Carlo E, Lattanzio G, Tripodi M, Musiani P, Poli V. Induced somatic inactivation of STAT3 in mice triggers the development of a fulminant form of enterocolitis. Cytokine 2004; 26(2): 45–56.

    Article  CAS  Google Scholar 

  79. 79.

    Goodbourn S, Maniatis T. Overlapping positive and negative regulatory domains of the human beta-interferon gene. Proc Natl Acad Sci U S A 1988; 85(5): 1447–1451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Kandimalla ER, Yu D, Zhao Q, Agrawal S. Effect of chemical modifications of cytosine and guanine in a CpG-motif of oligonucleotides: structure-immunostimulatory activity relationships. Bioorg Med Chem 2001; 9(3): 807–813.

    Article  CAS  Google Scholar 

  81. 81.

    Rajagopalan G, Kudva YC, Sen MM, Marietta EV, Murali N, Nath K, Moore J, David CS. IL-10-deficiency unmasks unique immune system defects and reveals differential regulation of organ-specific autoimmunity in non-obese diabetic mice. Cytokine 2006; 34(1–2): 85–95

    Article  CAS  Google Scholar 

  82. 82.

    Siddiqui KR, Laffont S, Powrie F. E-cadherin marks a subset of inflammatory dendritic cells that promote T cell-mediated colitis. Immunity 2010; 32(4): 557–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Villarino AV, Artis D, Bezbradica JS, Miller O, Saris CJ, Joyce S, Hunter CA. IL-27R deficiency delays the onset of colitis and protects from helminth-induced pathology in a model of chronic IBD. Int Immunol 2008; 20 (6): 739–752.

    Article  CAS  Google Scholar 

  84. 84.

    Chen JF, Guo JH, Moxham CM, Wang HY, Malbon CC. Conditional, tissue-specific expression of Q205L G alpha i2 in vivo mimics insulin action. J Mol Med (Berl) 1997; 75(4): 283–289.

    Article  CAS  Google Scholar 

  85. 85.

    Schoeb TR, Bullard DC. Microbial and histopathologic considerations in the use of mouse models of inflammatory bowel diseases. Inflamm Bowel Dis 2012; 18(8): 1558–1565.

    Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Chichlowski M, Sharp JM, Vanderford DA, Myles MH, Hale LP. Helicobacter typhlonius and Helicobacter rodentium differentially affect the severity of colon inflammation and inflammation-associated neoplasia in IL10-deficient mice. Comp Med 2008; 58(6): 534–541.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    McNamee EN, Wermers JD, Masterson JC, Collins CB, Lebsack MD, Fillon S, Robinson ZD, Grenawalt J, Lee JJ, Jedlicka P, Furuta GT, Rivera-Nieves J. Novel model of TH2-polarized chronic ileitis: the SAMP1 mouse. Inflamm Bowel Dis 2010; 16(5): 743–752.

    Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Luedde T, Schwabe RF. NF-κB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2011; 8(2): 108–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Susan Prattis.

Rights and permissions

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prattis, S., Jurjus, A. Spontaneous and transgenic rodent models of inflammatory bowel disease. Lab Anim Res 31, 47–68 (2015). https://doi.org/10.5625/lar.2015.31.2.47

Download citation

Keywords

  • Transgenic rodent models
  • intestinal microbiota
  • IBD