Skip to main content

Anti-Helicobacter pylori activity of crude N-acetylneuraminic acid isolated from glycomacropeptide of whey

Abstract

Helicobacter pylori colonizes the gastric mucosa of about half of the world’s population, causing chronic gastritis and gastric cancer. An increasing emergence of antibiotic-resistant H. pylori arouses demand on alternative non-antibiotic-based therapies. In this study, we freshly prepared crude N-acetylneuraminic acid obtained from glycomacropeptide (G-NANA) of whey through a neuraminidase-mediated reaction and evaluated its antibacterial ability against H. pylori and H. felis. Overnight cultures of the H. pylori were diluted with fresh media and different concentrations (1-150 mg/mL) of crude G-NANA were added directly to the culture tube. Bacterial growth was evaluated by measuring the optical density of the culture medium and the number of viable bacteria was determined by a direct count of the colony forming units (CFU) on agar plates. For the in vivo study, mice were orally infected with 100 μL (5×108 cfu/mL) of H. felis four times at a day’s interval, accompanied by a daily administration of crude G-NANA or vehicle. A day after the last infection, the mice were daily administered the crude G-NANA (0, 75, and 300 mg/mL) for 10 days and euthanized. Their stomachs were collected and bacterial colonization was determined by quantitative real-time PCR. Crude G-NANA inhibited H. pylori’s growth and reduced the number of viable bacteria in a dose-dependent manner. Furthermore, crude G-NANA inhibited bacterial colonization in the mice. These results showed that crude G-NANA has antibacterial activity against Helicobacter and demonstrated its therapeutic potential for the prevention of chronic gastritis and gastric carcinogenesis induced by Helicobacter infection in humans.

References

  1. 1.

    Huang JQ, Sridhar S, Chen Y, Hunt RH. Meta-analysis of the relationship between Helicobacter pylori seropositivity and gastric cancer. Gastroenterology 1998; 114(6): 1169–1179.

    CAS  Article  Google Scholar 

  2. 2.

    Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, Taniyama K, Sasaki N, Schlemper RJ. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 2001; 345(11): 784–789.

    CAS  Article  Google Scholar 

  3. 3.

    Perez-Perez GI, Rothenbacher D, Brenner H. Epidemiology of Helicobacter pylori infection. Helicobacter 2004; 9 Suppl 1: 1–6.

    Article  Google Scholar 

  4. 4.

    Borén T, Falk P, Roth KA, Larson G, Normark S. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 1993; 262(5141): 1892–1895.

    Article  Google Scholar 

  5. 5.

    Mobley HLT, Mendz MG, Hazell SL. Helicobacter; physiology and genetics, ASM press, Washington, D.C, 2001; pp 381–417.

    Google Scholar 

  6. 6.

    Backert S, Selbach M. Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol 2008; 10(8): 1573–1581.

    CAS  Article  Google Scholar 

  7. 7.

    Cover TL. The vacuolating cytotoxin of Helicobacter pylori. Mol Microbiol 1996; 20(2): 241–246.

    CAS  Article  Google Scholar 

  8. 8.

    Sayi A, Kohler E, Hitzler I, Arnold I, Schwendener R, Rehrauer H, Müller A. The CD4+ T cell-mediated IFN-gamma response to Helicobacter infection is essential for clearance and determines gastric cancer risk. J Immunol 2009; 182(11): 7085–7101.

    CAS  Article  Google Scholar 

  9. 9.

    Akhiani AA, Pappo J, Kabok Z, Schön K, Gao W, Franzén LE, Lycke N. Protection against Helicobacter pylori infection following immunization is IL-12-dependent and mediated by Th1 cells. J Immunol 2002; 169(12): 6977–6984.

    CAS  Article  Google Scholar 

  10. 10.

    Beswick EJ, Pinchuk IV, Earley RB, Schmitt DA, Reyes VE. Role of gastric epithelial cell-derived transforming growth factor beta in reduced CD4+ T cell proliferation and development of regulatory T cells during Helicobacter pylori infection. Infect Immun 2011; 79(7): 2737–2745.

    CAS  Article  Google Scholar 

  11. 11.

    O’Connor A, Vaira D, Gisbert JP, O’Morain C. Treatment of Helicobacter pylori infection 2014. Helicobacter 2014; 19: 38–45.

    Article  Google Scholar 

  12. 12.

    Wang B, Brand-Miller J. The role and potential of sialic acid in human nutrition. Eur J Clin Nutr 2003; 57(11): 1351–1369.

    CAS  Article  Google Scholar 

  13. 13.

    Tram TH, Brand Miller JC, McNeil Y, McVeagh P. Sialic acid content of infant saliva: comparison of breast fed with formula fed infants. Arch Dis Child 1997; 77(4): 315–318.

    CAS  Article  Google Scholar 

  14. 14.

    Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 1993; 3(2): 97–130.

    CAS  Article  Google Scholar 

  15. 15.

    Parkkinen J, Finne J, Achtman M, Väisänen V, Korhonen TK. Escherichia coli strains binding neuraminyl alpha 2–3 galactosides. Biochem Biophys Res Commun 1983; 111(2): 456–461.

    CAS  Article  Google Scholar 

  16. 16.

    Idota T, Kawakami H, Murakami Y, Sugawara M. Inhibition of cholera toxin by human milk fractions and sialyllactose. Biosci Biotechnol Biochem 1995; 59(3): 417–419.

    CAS  Article  Google Scholar 

  17. 17.

    Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE, Moran AP, Athman R, Mémet S, Huerre MR, Coyle AJ, DiStefano PS, Sansonetti PJ, Labigne A, Bertin J, Philpott DJ, Ferrero RL. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 2004; 5(11): 1166–1174.

    CAS  Article  Google Scholar 

  18. 18.

    Kwok T, Zabler D, Urman S, Rohde M, Hartig R, Wessler S, Misselwitz R, Berger J, Sewald N, König W, Backert S. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 2007; 449(7164): 862–866.

    CAS  Article  Google Scholar 

  19. 19.

    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25(4): 402–408.

    CAS  Article  Google Scholar 

  20. 20.

    Campbell J. High-throughput assessment of bacterial growth inhibition by optical density measurements. Curr Protoc Chem Biol 2010; 2(4):195–208.

    Article  Google Scholar 

  21. 21.

    Mohammadi M, Redline R, Nedrud J, Czinn S. Role of the host in pathogenesis of Helicobacter-associated gastritis: H. felis infection of inbred and congenic mouse strains. Infect Immun 1996; 64(1): 238–245.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Flach CF, Svensson N, Blomquist M, Ekman A, Raghavan S, Holmgren J. A truncated form of HpaA is a promising antigen for use in a vaccine against Helicobacter pylori. Vaccine 2011; 29(6): 1235–1241.

    CAS  Article  Google Scholar 

  23. 23.

    Malfertheiner P1, Schultze V, Rosenkranz B, Kaufmann SH, Ulrichs T, Novicki D, Norelli F, Contorni M, Peppoloni S, Berti D, Tornese D, Ganju J, Palla E, Rappuoli R, Scharschmidt BF, Del Giudice G. Safety and immunogenicity of an intramuscular Helicobacter pylori vaccine in noninfected volunteers: a phase I study. Gastroenterology 2008; 135(3): 787–795.

    CAS  Article  Google Scholar 

  24. 24.

    Stoicov C, Saffari R, Houghton J. Green tea inhibits Helicobacter growth in vivo and in vitro. Int J Antimicrob Agents 2009; 33(5): 473–478.

    CAS  Article  Google Scholar 

  25. 25.

    Matsubara S, Shibata H, Ishikawa F, Yokokura T, Takahashi M, Sugimura T, Wakabayashi K. Suppression of Helicobacter pylori-induced gastritis by green tea extract in Mongolian gerbils. Biochem Biophys Res Commun 2003; 310(3): 715–719.

    CAS  Article  Google Scholar 

  26. 26.

    Tombola F, Campello S, De Luca L, Ruggiero P, Del Giudice G, Papini E, Zoratti M. Plant polyphenols inhibit VacA, a toxin secreted by the gastric pathogen Helicobacter pylori. FEBS Lett 2003; 543(1-3): 184–189.

    CAS  Article  Google Scholar 

  27. 27.

    Sivam GP. Protection against Helicobacter pylori and other bacterial infections by garlic. J Nutr 2001; 131(3): 1106S–1108S.

    CAS  Article  Google Scholar 

  28. 28.

    Fahey JW, Haristoy X, Dolan PM, Kensler TW, Scholtus I, Stephenson KK, Talalay P, Lozniewski A. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proc Natl Acad Sci U S A 2002; 99(11): 7610–7615.

    CAS  Article  Google Scholar 

  29. 29.

    Mahady GB, Pendland SL, Chadwick LR. Resveratrol and red wine extracts inhibit the growth of CagA+ strains of Helicobacter pylori in vitro. Am J Gastroenterol 2003; 98(6): 1440–1441.

    CAS  Article  Google Scholar 

  30. 30.

    Sgouras D, Maragkoudakis P, Petraki K, Martinez-Gonzalez B, Eriotou E, Michopoulos S, Kalantzopoulos G, Tsakalidou E, Mentis A. In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus casei strain Shirota. Appl Environ Microbiol 2004; 70(1): 518–526.

    CAS  Article  Google Scholar 

  31. 31.

    Lorca GL, Wadström T, Valdez GF, Ljungh A. Lactobacillus acidophilus autolysins inhibit Helicobacter pylori in vitro. Curr Microbiol 2001; 42(1): 39–44.

    CAS  Article  Google Scholar 

  32. 32.

    Pinchuk IV, Bressollier P, Verneuil B, Fenet B, Sorokulova IB, Mégraud F, Urdaci MC. In vitro anti-Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics. Antimicrob Agents Chemother 2001; 45(11): 3156–3161.

    CAS  Article  Google Scholar 

  33. 33.

    Johnson-Henry KC, Mitchell DJ, Avitzur Y, Galindo-Mata E, Jones NL, Sherman PM. Probiotics reduce bacterial colonization and gastric inflammation in H. pylori-infected mice. Dig Dis Sci 2004; 49(7-8): 1095–1102.

    Article  Google Scholar 

  34. 34.

    Simon PM, Goode PL, Mobasseri A, Zopf D. Inhibition of Helicobacter pylori binding to gastrointestinal epithelial cells by sialic acid-containing oligosaccharides. Infect Immun 1997; 65(2): 750–757.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Mysore JV, Wigginton T, Simon PM, Zopf D, Heman-Ackah LM, Dubois A. Treatment of Helicobacter pylori infection in rhesus monkeys using a novel antiadhesion compound. Gastroenterology 1999; 117(6): 1316–1325.

    CAS  Article  Google Scholar 

  36. 36.

    Yang JC, Shun CT, Chien CT, Wang TH. Effective prevention and treatment of Helicobacter pylori infection using a combination of catechins and sialic acid in AGS cells and BALB/c mice. J Nutr 2008; 138(11): 2084–2090.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jong-Hwan Park.

Rights and permissions

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://doi.org/creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Kang, M., Choi, J. et al. Anti-Helicobacter pylori activity of crude N-acetylneuraminic acid isolated from glycomacropeptide of whey. Lab Anim Res 32, 99–104 (2016). https://doi.org/10.5625/lar.2016.32.2.99

Download citation

Keywords

  • N-neuraminic acid
  • glycomacropeptide
  • Helicobacter
  • antibacterial activity