Skip to main content

Overexpression of N141I PS2 increases γ-secretase activity through up-regulation of Presenilin and Pen-2 in brain mitochondria of NSE/hPS2m transgenic mice

Abstract

Alzheimer’s disease (AD) is known to induce alterations of mitochondrial function such as elevation of oxidative stress and activation of apopotosis. The aim of this study was to investigate the effects of human Presenilin 2 mutant (hPS2m) overexpression on the γ-secretase complex in the mitochondrial fraction. To achieve this, alterations of γ-secretase complex expression and activity were detected in the mitochondrial fraction derived from brains of NSE/hPS2m Tg mice and Non-Tg mice. Herein, the following were observed: i) overexpression of the hPS2m gene significantly up-regulated the deposition of Aβ-42 peptides in the hippocampus and cortex of brain, ii) overexpression of hPS2m protein induced alterations of γ-secretase components such as main component protein and activator protein but not stabilization-related proteins, iii) changes in γ-secretase components induced by overexpression of hPS2m protein up-regulated γ-secretase activity in the mitochondrial fraction, and iv) elevation of γ-secretase activity induced production of Aβ-42 peptides in the mitochondrial fraction. Based on these observations, these results indicate that alteration of γ-secretase activity in cells upon overexpression of hPS2m is tightly linked to mitochondrial dysfunction under the specific physiological and pathological conditions of AD.

References

  1. Weihofen A, Martoglio B. Intramembrane-cleaving proteases: controlled liberation of proteins and bioactive peptides. Trends Cell Biol 2003; 13(3): 71–78.

    Article  CAS  Google Scholar 

  2. De Strooper B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-secretase complex. Neuron 2003; 38(3): 9–12.

    Article  Google Scholar 

  3. Kimberly WT, LaVoie MJ, Ostaszewski BL, Ye W, Wolfe MS, Selkoe DJ. Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci USA 2003; 100(11): 6382–6387.

    Article  CAS  Google Scholar 

  4. Yu G, Nishimura M, Arawaka S, Levitan D, Zhang L, Tandon A, Song YQ, Rogaeva E, Chen F, Kawarai T, Supala A, Levesque L, Yu H, Yang DS, Holmes E, Milman P, Liang Y, Zhang DM, Xu DH, Sato C, Rogaev E, Smith M, Janus C, Zhang Y, Aebersold R, Farrer LS, Sorbi S, Bruni A, Fraser P, St George-Hyslop P. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature 2000; 407(6800): 48–54.

    Article  CAS  Google Scholar 

  5. Lee SF, Shah S, Li H, Yu C, Han W, Yu G. Mammalian APH-1 interacts with presenilin and nicastrin and is required for intramembrane proteolysis of amyloid-beta precursor protein and Notch. J Biol Chem 2002; 277(47): 45013–45019.

    Article  CAS  Google Scholar 

  6. Steiner H, Winkler E, Edbauer D, Prokop S, Basset G, Yamasaki A, Kostka M, Haass C. PEN-2 is an integral component of the gamma-secretase complex required for coordinated expression of presenilin and nicastrin. J Biol Chem 2002; 277(42): 39062–39065.

    Article  CAS  Google Scholar 

  7. Suh YH, Checler F. Amyloid precursor protein, presenilins, and alpha-synuclein: molecular pathogenesis and pharmacological applications in Alzheimer’s disease. Pharmacol Rev 2002; 54(3): 469–525.

    Article  CAS  Google Scholar 

  8. Teng FY, Tang BL. Widespread gamma-secretase activity in the cell, but do we need it at the mitochondria?. Biochem Biophys Res Commun 2005; 328(4): 1–5.

    Article  CAS  Google Scholar 

  9. St George-Hyslop PH. Molecular genetics of Alzheimer’s disease. Biol Psychiatry 2000; 47(3): 183–199.

    Article  CAS  Google Scholar 

  10. Thinakaran G, Harris CL, Ratovitski T, Davenport F, Slunt HH, Price DL, Borchelt DR, Sisodia SS. Evidence that levels of presenilins (PS1 and PS2) are coordinately regulated by competition for limiting cellular factors. J Biol Chem 1997; 272(45): 28415–28422.

    Article  CAS  Google Scholar 

  11. Wang HQ, Nakaya Y, Du Z, Yamane T, Shirane M, Kudo T, Takeda M, Takebayashi K, Noda Y, Nakayama KI, Nishimura M. Interaction of presenilins with FKBP38 promotes apoptosis by reducing mitochondrial Bcl-2. Hum Mol Genet 2005; 14(13): 1889–1902.

    Article  CAS  Google Scholar 

  12. Hwang DY, Chae KR, Kang TS, Hwang JH, Lim CH, Kang HK, Goo JS, Lee MR, Lim HJ, Min SH, Cho JY, Hong JT, Song CW, Paik SG, Cho JS, Kim YK. Alterations in behavior, amyloid beta-42, caspase-3, and Cox-2 in mutant PS2 transgenic mouse model of Alzheimer’s disease. FASEB J 2002; 16(3): 805–813.

    Article  CAS  Google Scholar 

  13. Janicki S, Monteiro MJ. Increased apoptosis arising from increased expression of the Alzheimer’s disease-associated presenilin-2 mutation (N141I). J Cell Biol 1997; 139(4): 485–495.

    Article  CAS  Google Scholar 

  14. Alves da Costa C, Paitel E, Mattson MP, Amson R, Telerman A, Ancolio K, Checler F. Wild-type and mutated presenilins 2 trigger p53-dependent apoptosis and down-regulate presenilin 1 expression in HEK293 human cells and in murine neurons. Proc Natl Acad Sci USA 2002; 99(3): 4043–4048.

    Article  CAS  Google Scholar 

  15. van de Craen M, de Jonghe C, van den Brande I, Declercq W, van Gassen G, van Criekinge W, Vanderhoeven I, Fiers W, van Broeckhoven C, Hendriks L, Vandenabeele P. Identification of caspases that cleave presenilin-1 and presenilin-2. Five presenilin-(PS1) mutations do not alter the sensitivity of PS1 to caspases. FEBS Lett 1999; 445(4): 149–154.

    Article  Google Scholar 

  16. Gandhi S, Muqit MM, Stanyer L, Healy DG, Abou-Sleiman PM, Hargreaves I, Heales S, Ganguly M, Parsons L, Lees AJ, Latchman DS, Holton JL, Wood NW, Revesz T. PINK1 protein in normal human brain and Parkinson’s disease. Brain 2006; 129: 1720–1731.

    Article  CAS  Google Scholar 

  17. Hansson CA, Frykman S, Farmery MR, Tjernberg LO, Nilsberth C, Pursglove SE, Ito A, Winblad B, Cowburn RF, Thyberg J, Ankarcrona M. Nicastrin, presenilin, APH-1, and PEN-2 form active gamma-secretase complexes in mitochondria. J Biol Chem 2004; 279(49): 51654–51660.

    Article  CAS  Google Scholar 

  18. Newmeyer DD, Ferguson-Miller S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell 2003; 112(4): 481–490.

    Article  CAS  Google Scholar 

  19. Tsujimoto Y. Cell death regulation by the Bcl-2 protein family in the mitochondria. J Cell Physiol 2003; 195(4): 158–167.

    Article  CAS  Google Scholar 

  20. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004; 305(5684): 626–629.

    Google Scholar 

  21. Yuan J, Yankner BA. Apoptosis in the nervous system. Nature 2000; 407(6805): 802–809.

    Article  CAS  Google Scholar 

  22. Dickson DW. Apoptotic mechanisms in Alzheimer neurofibrillary degeneration: cause or effect?. J Clin Invest 2004; 114(4): 23–27.

    Article  CAS  Google Scholar 

  23. Gabuzda D, Busciglio J, Chen LB, Matsudaira P, Yankner BA. Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative. J Biol Chem 1994; 269(18): 13623–13628.

    CAS  PubMed  Google Scholar 

  24. Gasparini L, Racchi M, Benussi L, Curti D, Binetti G, Bianchetti A, Trabucchi M, Govoni S. Effect of energy shortage and oxidative stress on amyloid precursor protein metabolism in COS cells. Neurosci Lett 1997; 231(4): 113–117.

    Article  CAS  Google Scholar 

  25. Misonou H, Morishima-Kawashima M, Ihara Y. Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells. Biochemistry 2000; 39(23): 6951–6959.

    Article  CAS  Google Scholar 

  26. Busciglio J, Pelsman A, Wong C, Pigino G, Yuan M, Mori H, Yankner BA. Altered metabolism of the amyloid beta precursor protein is associated with mitochondrial dysfunction in Down’s syndrome. Neuron 2002; 33(3): 677–688.

    Article  CAS  Google Scholar 

  27. Yang AJ, Chandswangbhuvana D, Shu T, Henschen A, Glabe CG. Intracellular accumulation of insoluble, newly synthesized abetan-in amyloid precursor protein-transfected cells that have been treated with Abeta1-42. J Biol Chem 1999; 274(29): 20650–20656.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae Youn Hwang.

Rights and permissions

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://doi.org/creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, W.B., Park, J.J., Kim, J.E. et al. Overexpression of N141I PS2 increases γ-secretase activity through up-regulation of Presenilin and Pen-2 in brain mitochondria of NSE/hPS2m transgenic mice. Lab Anim Res 32, 249–256 (2016). https://doi.org/10.5625/lar.2016.32.4.249

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.5625/lar.2016.32.4.249

Keywords