Skip to main content

Effects of coenzyme Q10 on the antioxidant system in SD rats exposed to lipopolysaccharide-induced toxicity

Abstract

The study was performed to see the effects of coenzyme Q10 (CoQ10) on blood biochemical components and hepatic antioxidant system in rats exposed to lipopolysaccharide (LPS)-induced toxicity. A total of 24 rats were allocated to four groups: control (CON), 100 mg/kg BW of LPS (LPS), 100 mg of CoQ10/kg BW with LPS (LCQI) and 300 mg of CoQ10/kg BW with LPS (LCQII). The LPS and LCQI groups showed a significant (P<0.05) increase in the relative spleen weight compared with the CON group without affecting body and liver weights. The blood alanine aminotransferase (ALT) level in the LPS group was significantly (P<0.05) greater than that in the CON group, while supplementation with 100 or 300 mg CoQ10 to rats injected with LPS normalized the ALT level in the CON group. In antioxidant systems, the LPS group showed a significantly (P<0.05) higher mRNA and activity of superoxide dismutase (SOD) than the CON group. The supplementation with CoQ10 to the LPS-treated group normalized the level of SOD, which was comparable to the level of the CON group. Both the mRNA expression and activity of glutathione peroxidase in the LCQI and LCQII groups were higher (P<0.05) than that of the LPS group. However, administration of LPS or CoQ10 unaffected the level of catalase and total antioxidant power. The level of lipid peroxidation in the LCQII group was lower (P<0.05) than that in the LPS group. In conclusion, CoQ10 exerted its favorable effect against liver damage by modulation of antioxidant enzymes in LPS treated rats.

References

  1. Littarru GP. Energy and Defense. Facts and perspectives on coenzyme Q10 in biology and medicine. Casa Editrice Scientifica Internazionale 1995. Roma.

    Google Scholar 

  2. Quiles JL, Ochoa JJ, Battino M, Gutierrez-Rios P, Nepomuceno EA, Frías ML, Huertas JR, Mataix J. Life-long supplementation with a low dosage of coenzyme Q10 in the rat: effects on antioxidant status and DNA damage. Biofactors 2005; 25: 73–86.

    CAS  Article  Google Scholar 

  3. Acosta MJ, Vazquez Fonseca L, Desbats MA, Cerqua C1, Zordan R, Trevisson E, Salviati L. Coenzyme Q biosynthesis in health and disease. Biochim Biophys Acta 2016; 1857(8): 1079–1085.

    CAS  Article  Google Scholar 

  4. Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochim Biophys Acta 2004; 1660: 171–199.

    CAS  Article  Google Scholar 

  5. Littarru GP, Tiano L, Belardinelli R, Watts GF. Coenzyme Q(10), endothelial function, and cardiovascular disease. Biofactors 2011; 37(5): 366–373.

    CAS  Article  Google Scholar 

  6. Yang YK, Wang LP, Chen L, Yao XP, Yang KQ, Gao LG, Zhou XL. Coenzyme Q10 treatment of cardiovascular disorders of ageing including heart failure, hypertension and endothelial dysfunction. Clin Chim Acta 2015; 450: 83–89.

    CAS  Article  Google Scholar 

  7. Kamzalov S, Sumien N, Forster MJ, Sohal RS. Coenzyme Q intake elevates the mitochondrial and tissue levels of Coenzyme Q and alpha-tocopherol in young mice. J Nutr 2003; 133(10): 3175–3180.

    CAS  Article  Google Scholar 

  8. Bullón P, Román-Malo L, Marín-Aguilar F, Alvarez-Suarez JM, Giampieri F, Battino M, Cordero MD. Lipophilic antioxidants prevent lipopolysaccharide-induced mitochondrial dysfunction through mitochondrial biogenesis improvement. Pharmacol Res 2015; 91: 1–8.

    Article  Google Scholar 

  9. James AM, Smith RA, Murphy MP. Antioxidant and prooxidant properties of mitochondrial Coenzyme Q. Arch Biochem Biophys 2004; 423(1): 47–56.

    CAS  Article  Google Scholar 

  10. Niklowitz P, Menke T, Andler W, Okun JG. Simultaneous analysis of coenzyme Q10 in plasma, erythrocytes and platelets: comparison of the antioxidant level in blood cells and their environment in healthy children and after oral supplementation in adults. Clin Chim Acta 2004; 342: 219–226.

    CAS  Article  Google Scholar 

  11. Shekelle P, Morton S, Hardy ML. Effect of supplemental antioxidants vitamin C, vitamin E, and coenzyme Q10 for the prevention and treatment of cardiovascular disease. Evid Rep Technol Assess (Summ) 2003; 83: 1–3.

    Google Scholar 

  12. Rötig A, Appelkvist EL, Geromel V, Chretien D, Kadhom N, Edery P, Lebideau M, Dallner G, Munnich A, Ernster L, Rustin P. Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet 2000; 356(9227): 391–395.

    Article  Google Scholar 

  13. Novoselova EG, Lunin SM, Novoselova T V, Khrenov MO, Glushkova OV, Avkhacheva N V, Safronova VG, Fesenko EE. Naturally occurring antioxidant nutrients reduce inflammatory response in mice. Eur J Pharmacol 2009; 615: 234–240.

    CAS  Article  Google Scholar 

  14. Maruyama H, Furukawa K, Onda M. Effect of coenzyme Q10 on endotoxin induced hepatocyte injury modulation of endotoxin-activated polymorphonuclear neutrophils. Nihon Ika Daigaku Zasshi 1995; 62(3): 271–282.

    CAS  Article  Google Scholar 

  15. Frei B, Kim MC, Ames BN. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc Natl Acad Sci U S A 1990; 87(12): 4879–4883.

    CAS  Article  Google Scholar 

  16. Sohal RS, Kamzalov S, Sumien N, Ferguson M, Rebrin I, Heinrich KR, Forster MJ. Effect of coenzyme Q10 intake on endogenous coenzyme Q content, mitochondrial electron transport chain, antioxidative defenses, and life span of mice. Free Radic Biol Med 2006; 40(3): 480–487.

    CAS  Article  Google Scholar 

  17. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25(4): 402–408.

    CAS  Article  Google Scholar 

  18. Kupfer D, Levin E. Monooxygenase drug metabolizing activity in CaCl2-aggregated hepatic microsomes from rat liver. Biochem Biophys Res Commun 1972; 47(3): 611–618.

    CAS  Article  Google Scholar 

  19. Tappel AL. Glutathione peroxidase and hydroperoxides. Methods in Enzymol 1978; 52: 506–513.

    CAS  Article  Google Scholar 

  20. Melega S, Canistro D, De Nicola GR, Lazzeri L, Sapone A, Paolini M. Protective effect of Tuscan black cabbage sprout extract against serum lipid increase and perturbations of liver antioxidant and detoxifying enzymes in rats fed a high-fat diet. Br J Nutr 2013; 110(6): 988–997.

    CAS  Article  Google Scholar 

  21. Bidlack WR, Tappel AL. Damage to microsomal membrane by lipid peroxidation. Lipids 1973; 8(4): 177–182.

    CAS  Article  Google Scholar 

  22. Giannini E, Botta F, Fasoli A, Ceppa P, Risso D, Lantieri PB, Celle G, Testa R. Progressive liver functional impairment is associated with an increase in AST/ALT ratio. Dig Dis Sci 1999; 44(6): 1249–1253.

    CAS  Article  Google Scholar 

  23. Li Q, Liu Y, Che Z, Zhu H, Meng G, Hou Y, Ding B, Yin Y, Chen F. Dietary L-arginine supplementation alleviates liver injury caused by Escherichia coli LPS in weaned pigs. Innate Immun 2012; 18(6): 804–814.

    Article  Google Scholar 

  24. El-Tanbouly DM, Abdelsalam RM, Attia AS, Abdel-Aziz MT. Pretreatment with magnesium ameliorates lipopolysaccharide-induced liver injury in mice. Pharmacol Rep 2015; 67(5): 914–920.

    CAS  Article  Google Scholar 

  25. Ali SA, Faddah L, Abdel-Baky A, Bayoumi A. Protective effect of L-carnitine and coenzyme Q10 on CCl4-induced liver injury in rats. Sci Pharm 2010; 78(4): 881–896.

    CAS  Article  Google Scholar 

  26. Fouad AA, Jresat I. Hepatoprotective effect of coenzyme Q10 in rats with acetaminophen toxicity. Environ Toxicol Pharmacol 2012; 33(2): 158–167.

    CAS  Article  Google Scholar 

  27. Bian K, Murad F. Diversity of endotoxin-induced nitrotyrosine formation in macrophage-endothelium-rich organs. Free Radic Biol Med 2001; 31(4): 421–429.

    CAS  Article  Google Scholar 

  28. Fridovich I. Superoxide dismutase. Enzymology 1974; 41: 36–40.

    Google Scholar 

  29. Matés JM. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 2000; 153: 83–104.

    Article  Google Scholar 

  30. Chauhan DP, Gupta PH, Nampoothiri MR, Singhal PC, Chugh KS, Nair CR. Determination of erythrocyte superoxide dismutase, catalase, glucose-6-phosphate dehydrogenase, reduced glutathione and malonyldialdehyde in uremia. Clin Chim Acta 1982; 123: 153–159.

    CAS  Article  Google Scholar 

  31. Nishimura N, Ito Y, Adachi T, Hirano K, Sugiura M, Sawaki S. Enzyme immunoassay for cuprozinc-superoxide dismutase in serum and urine. J Pharmacobiodyn 1982; 5(6): 394–402.

    CAS  Article  Google Scholar 

  32. Rossol M, Heine H, Meusch U, Quandt D, Klein C, Sweet MJ, Hauschildt S. LPS-induced cytokine production in human monocytes and macrophages. Crit Rev Immunol 2011; 31(5): 379–446.

    CAS  Article  Google Scholar 

  33. Chou ST, Peng H Y, Hsu JC, Lin CC, Shih Y. Achillea millefolium L. essential oil inhibits LPS-induced oxidative stress and nitric oxide production in RAW 264.7 Macrophages. Int J Mol Sci 2013; 14(7): 12978–12993.

    Article  Google Scholar 

  34. Spolarics Z. Endotoxin stimulates gene expression of ROS-eliminating pathways in rat hepatic endothelial and Kupffer cells. Am J Physiol 1996; 270: G660–666.

    Google Scholar 

  35. Sena CM, Nunes E, Gomes A, Santos MS, Proença T, Martins MI, Seiça RM. Supplementation of coenzyme Q10 and alpha-tocopherol lowers glycated hemoglobin level and lipid peroxidation in pancreas of diabetic rats. Nutr Res 2008; 28(2): 113–121.

    CAS  Article  Google Scholar 

  36. Ahmadvand H, Tavafi M, Khosrowbeygi A. Amelioration of altered antioxidant enzymes activity and glomerulosclerosis by coenzyme Q10 in alloxan-induced diabetic rats. J Diabetes Complications 2012; 26(6): 476–482.

    Article  Google Scholar 

  37. Lee CK, Pugh TD, Klopp RG, Edwards J, Allison DB, Weindruch R, Prolla TA. The impact of alpha-lipoic acid, coenzyme Q10 and caloric restriction on life span and gene expression patterns in mice. Free Radic Biol Med 2004; 36(8): 1043–1057.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by agrant from Gyeongnam National University of Science and Technology in 2016. The authors also thank the Regional Animal Research Center at GNTECH to use the analysis instruments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to In-Surk Jang.

Rights and permissions

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, MH., Kim, HN., Lim, Y. et al. Effects of coenzyme Q10 on the antioxidant system in SD rats exposed to lipopolysaccharide-induced toxicity. Lab Anim Res 33, 24–31 (2017). https://doi.org/10.5625/lar.2017.33.1.24

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.5625/lar.2017.33.1.24

Keywords

  • Coenzyme Q10
  • lipopolysaccharide
  • antioxidant enzymes
  • lipid peroxidation