Skip to main content

Comparative analysis of basal locomotor activity-related metabolic phenotypes between C57BL/6 mice and ICR mice substrains derived from three different sources

Abstract

Animal model, as an indispensable tool for scientific purposes of biomedical researches and clinical application, is a commonly used in various researches. Regarding to this, it is necessary to establish the metabolic phenotype of animal model to minimize spurious interpretations and ensure a level of accuracy and reliability adequate for experimental research. However, the metabolic phenotype-related analysis within rodent strains derived from different source is nonexistent, especially in C57BL/6Korl mice and Korl:ICR mice (a domestic mouse strain). To compare the physiological and metabolic phenotypes over a period of time, we utilized the C57BL/6 mice (C57BL/6Korl, A:C57BL/6, and B:C57BL/6) and ICR mice (Korl:ICR, A:ICR, and B:ICR) derived from three different sources. Our data showed that average body weight, body temperature, food intake, and water consumption have a similar tendency among the C57BL/6 and ICR groups, except for the higher body weight of C57BL/6Korl mice over a period of time. Moreover, some significant differences was observed in adipose tissue mass and adipocyte size among the groups, with a higher tendency of C57BL/6Korl mice and Korl:ICR mice. Most importantly, resting metabolic rate (RMR) serves as an approximation of the metabolic phenotype showed no significant difference among the groups of C57BL/6 mice and ICR mice, except for the lower oxygen uptake of C57BL/6Korl mice compare to the A:C57BL/6 mice. Taken together, our data suggest that C57BL/6 mice and ICR mice derived from three different sources have an overall similar feature of physiological and metabolic phenotypes.

References

  1. 1.

    Ericsson AC, Crim MJ, Franklin CL. A brief history of animal modeling. Mo Med 2013; 110(3): 201–205.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Azzu V, Valencak TG. Energy Metabolism and Ageing in the Mouse: A Mini-Review. Gerontology 2017.

    Google Scholar 

  3. 3.

    Ellenbroek B, Youn J. Rodent models in neuroscience research: is it a rat race?. Dis Model Mech 2016; 9(10): 1079–1087.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Duarte LC, Speakman JR. Low resting metabolic rate is associated with greater lifespan because of a confounding effect of body fatness. Age (Dordr) 2014; 36(6): 9731.

    Article  CAS  Google Scholar 

  5. 5.

    Manini TM. Energy expenditure and aging. Ageing Res Rev 2010; 9(1): 1–11.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Hulbert AJ, Else PL. Basal metabolic rate: history, composition, regulation, and usefulness. Physiol Biochem Zool 2004; 77(6): 869–876.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Van Klinken JB, van den Berg SA, Havekes LM, Willems Van Dijk K. Estimation of activity related energy expenditure and resting metabolic rate in freely moving mice from indirect calorimetry data. PLoS One 2012; 7(5): e36162.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. 8.

    Wone B, Sears MW, Labocha MK, Donovan ER, Hayes JP. Genetic variances and covariances of aerobic metabolic rates in laboratory mice. Proc Biol Sci 2009; 276(1673): 3695–3704.

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Song SH, Kim JE, Go J, Koh EK, Sung JE, Lee HA, Choi KM, Kim HD, Jung YS, Kim KS, Hwang DY. Comparison of the response using ICR mice derived from three different sources to ethanol/hydrochloric acid-induced gastric injury. Lab Anim Res 2016; 32(1): 56–64.

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Chia R, Achilli F, Festing MF, Fisher EM. The origins and uses of mouse outbred stocks. Nat Genet 2005; 37(11): 1181–1186.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Selman C, Lumsden S, Bünger L, Hill WG, Speakman JR. Resting metabolic rate and morphology in mice (Mus musculus) selected for high and low food intake. J Exp Biol 2001; 204(Pt 4): 777–784.

    CAS  PubMed  Google Scholar 

  12. 12.

    Speakman JR. Measuring energy metabolism in the mousetheoretical, practical, and analytical considerations. Front Physiol 2013; 4: 34.

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Gim MN, Choi JH. The effects of weekly exercise time on VO2max and resting metabolic rate in normal adults. J Phys Ther Sci 2016; 28(4): 1359–1363.

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Kim JE, Yun WB, Sung JE, Lee HA, Choi JY, Choi YS, Jung YS, Kim KS, Hwang DY. Characterization the response of Korl:ICR mice to loperamide induced constipation. Lab Anim Res 2016; 32(4): 231–240.

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Parlee SD, Lentz SI, Mori H, MacDougald OA. Quantifying size and number of adipocytes in adipose tissue. Methods Enzymol 2014; 537: 93–122.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Kim J, Park J, Kim B, Lee CH, Lim K, Suh H. Effects of Silk Peptides Administration on Fat Utilization Over a Whole Day in Mice. J Exerc Nutrition Biochem 2016; 20(4): 53–59.

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Angus DJ, Hargreaves M, Dancey J, Febbraio MA. Effect of carbohydrate or carbohydrate plus medium-chain triglyceride ingestion on cycling time trial performance. J Appl Physiol (1985) 2000; 88(1): 113–119.

    CAS  Article  Google Scholar 

  18. 18.

    Ishihara K, Oyaizu S, Onuki K, Lim K, Fushiki T. Chronic (-)- hydroxycitrate administration spares carbohydrate utilization and promotes lipid oxidation during exercise in mice. J Nutr 2000; 130(12): 2990–2995.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Talan M. Body temperature of C57BL/6J mice with age. Exp Gerontol 1984; 19(1): 25–29.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Hunter JE, Butterworth J, Perkins ND, Bateson M, Richardson CA. Using body temperature, food and water consumption as biomarkers of disease progression in mice with Eμ-myc lymphoma. Br J Cancer 2014; 110(4): 928–934.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Talan MI, Engel BT. Temporal decrease of body temperature in middle-aged C57BL/6J mice. J Gerontol 1986; 41(1): 8–12.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Yang Y, Smith DL Jr, Keating KD, Allison DB, Nagy TR. Variations in body weight, food intake and body composition after long-term high-fat diet feeding in C57BL/6J mice. Obesity (Silver Spring) 2014; 22(10): 2147–2155.

    CAS  Article  Google Scholar 

  23. 23.

    Mekada K, Abe K, Murakami A, Nakamura S, Nakata H, Moriwaki K, Obata Y, Yoshiki A. Genetic differences among C57BL/6 substrains. Exp Anim 2009; 58(2): 141–149.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Chiu CL, Morgan CT, Lupton SJ, Lind JM. Parent of origin influences the cardiac expression of vascular endothelial growth factor (Vegfa). BMC Med Genet 2013; 14: 43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Santos WJ, Melige M, Chakraborty N, Meyerhoff J, Hammamieh R, Jett M., Strain differences in response to stress: Territorial urine markings, body weight, and temperature. The FASEB Journal 2012; 26(1 Supplement): 798.24.

    Google Scholar 

  26. 26.

    Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci 2013; 9(2): 191–200.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc 2001; 60(3): 329–339.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Rydén M, Andersson DP, Bergström IB, Arner P. Adipose tissue and metabolic alterations: regional differences in fat cell size and number matter, but differently: a cross-sectional study. J Clin Endocrinol Metab 2014; 99(10): E1870–1876.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Jansson E, Kaijser L. Substrate utilization and enzymes in skeletal muscle of extremely endurance-trained men. J Appl Physiol (1985) 1987; 62(3): 999–1005.

    CAS  Article  Google Scholar 

  30. 30.

    Kane SL, Garland T Jr, Carter PA. Basal metabolic rate of aged mice is affected by random genetic drift but not by selective breeding for high early-age locomotor activity or chronic wheel access. Physiol Biochem Zool 2008; 81(3): 288–300.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

This project was supported by a grant of BIOREIN (Laboratory Animal Bio Resources Initiative) from Ministry of Food and Drug Safety in 2016.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joon Young Cho.

Rights and permissions

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hwang, DJ., Song, HK., Kim, KS. et al. Comparative analysis of basal locomotor activity-related metabolic phenotypes between C57BL/6 mice and ICR mice substrains derived from three different sources. Lab Anim Res 33, 140–149 (2017). https://doi.org/10.5625/lar.2017.33.2.140

Download citation

Keywords

  • C57BL/6Korl
  • Korl:ICR
  • metabolic phenotype
  • resting metabolic rates