Quinolone susceptibility and genetic characterization of Salmonella enterica subsp. enterica isolated from pet turtles
Laboratory Animal Research volume 33, pages 49–56 (2017)
Abstract
Turtle-borne Salmonella enterica owns significance as a leading cause in human salmonellosis. The current study aimed to determine the quinolone susceptibility and the genetic characteristics of 21 strains of S. enterica subsp. enterica isolated from pet turtles. Susceptibility of four antimicrobials including nalidixic acid, ciprofloxacin, ofloxacin, and levofloxacin was examined in disk diffusion and MIC tests where the majority of the isolates were susceptible to all tested quinolones. In genetic characterization, none of the isolates were positive for qnr or aac(6’)-Ib genes and no any target site mutations could be detected in gyrA, gyrB, and parC quinolone resistance determining regions (QRDR). In addition, neighbor-joining phylogenetic tree derived using gyrA gene sequences exhibited two distinct clads comprising; first, current study isolates, and second, quinolone-resistant isolates of human and animal origin. All results suggest that studied strains of S. enterica subsp. enterica isolated from pet turtles are susceptible to quinolones and genetically more conserved with regards to gyrA gene region.
References
Hui YH, Gorham JR, Murrell KD. Foodborne Disease Handbook; Vol. 1; Diseases Caused by Bacteria, Marcel Dekker Inc., New York, 1994; pp 97–131.
Barrow PA, Methner U. Salmonella in Domestic Animals. 2nd ed, CABI, UK, 2013. pp 136–351.
Marcus R. New information about pediatric foodborne infections: the view from FoodNet. Curr Opin Pediatr 2008; 20(1): 79–84.
Bennett SD, Manikonda K, Mungai E, Dewey-Mattia D, Gould LH. Surveillance. 2014 [cited 2016 Dec 31]; Available from: https://stacks.cdc.gov/view/cdc/23299view/cdc/23299
Kruse H, kirkemo AM, Handeland K. Wildlife as source of zoonotic infections. Emerg Infect Dis 2004; 10(12): 2067–2072.
Eng S-K, Pusparajah P, Ab Mutalib N-S, Ser H-L, Chan K-G, Lee L-H. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front Life Sci 2015; 8(3): 284–293.
Kownhar H, Shankar EM, Rajan R, Rao UA. Emergence of nalidixic acid-resistant Salmonella enterica serovar Typhi resistant to ciprofloxacin in India. J Med Microbiol 2007; 56(1):136-137.
Souza RB, Ferrari RG, Magnani M, Kottwitz LB, Alcocer I, Tognim MC, Oliveira TC. Ciprofloxacin susceptibility reduction of Salmonella strains isolated from outbreaks. Braz J Microbiol 2010; 41(2): 497–500.
Carrique-Mas JJ, Papadopoulou C, Evans SJ, Wales A, Teale CJ, Davies RH. Trends in phage types and antimicrobial resistance of Salmonella enterica serovar Enteritidis isolated from animals in Great Britain from 1990 to 2005. Vet Rec 2008; 162(17): 541–546.
Meakins S, Fisher IS, Berghold C, Gerner-Smidt P, Tschäpe H, Cormican M, Luzzi I, Schneider F, Wannett W, Coia J, Echeita A, Threlfall EJ; Enter-net participants. Antimicrobial drug resistance in human nontyphoidal Salmonella isolates in Europe 2000-2004: a report from the Enter-net International Surveillance Network. Microb Drug Resist 2008; 14(1): 31–35.
Eaves DJ, Randall L, Gray DT, Buckley A, Woodward MJ, White AP, Piddock LJ. Prevalence of mutations within the quinolone resistance-determining region of gyrA, gyrB, parC, and parE and association with antibiotic resistance in quinolone-resistant Salmonella enterica. Antimicrob Agents Chemother 2004; 48(10): 4012–4015.
Avsaroglu MD, Helmuth R, Junker E, Hertwig S, Schroeter A, Akcelik M, Bozoglu F, Guerra B. Plasmid-mediated quinolone resistance conferred by qnrS1 in Salmonella enterica serovar Virchow isolated from Turkish food of avian origin. J Antimicrob Chemother 2007; 60(5): 1146–1150.
Rodríguez-Martínez JM, Cano ME, Velasco C, Martínez-Martínez L, Pascual A. Plasmid-mediated quinolone resistance: an update. J Infect Chemother 2011; 17(2): 149–182.
Warwick C, Arena PC, Steedman C. Health implications associated with exposure to farmed and wild sea turtles. JRSM Short Rep 2013; 4(1): 8.
Warwick C, Arena PC, Steedman C, Jessop M. A review of captive exotic animal-linked zoonoses. J Environ Health Res 2012; 12(1): 9–24.
Shin D-M, Hossain S, Wimalasena S, Heo G-J. Antimicrobial resistance and virulence factors of Edwardsiella tarda isolated from pet turtles. Pak Vet J 2016; 37(1): 85–89.
Wendt M, Heo GJ. Multilocus sequence typing analysis of Pseudomonas aeruginosa isolated from pet Chinese stripe-necked turtles (Ocadia sinensis). Lab Anim Res 2016; 32(4): 208–216.
Hossain S, Wimalasena SHMP, Heo G-J. Virulence factors and antimicrobial resistance pattern of Citrobacter freundii isolated from healthy pet turtles and their environment. Asian J Anim Vet Adv 2017; 12(1): 10–16.
Bosch S, Tauxe RV, Behravesh CB. Turtle-Associated Salmonellosis, United States, 2006–2014. Emerg Infect Dis 2016; 22(7): 1149–1155.
Cohen ML, Potter M, Pollard R, Feldman RA. Turtle-associated salmonellosis in the United States. Effect of Public Health Action, 1970 to 1976. JAMA 1980; 243(12): 1247–1249.
Díaz MA, Cooper RK, Cloeckaert A, Siebeling RJ. Plasmid-mediated high-level gentamicin resistance among enteric bacteria isolated from pet turtles in Louisiana. Appl Environ Microbiol 2006; 72(1): 306–312.
Nowakiewicz A, Ziółkowska G, Zięba P, Stępniewska K, Tokarzewski S. Russian tortoises (Agrionemys horsfieldi) as a potential reservoir for Salmonella spp. Res Vet Sci 2012; 92(2): 187–190.
Giacopello C, Foti M, Passantino A, Fisichella V, Aleo A, Mammina C. Serotypes and antibiotic susceptibility patterns of Salmonella spp. isolates from spur-thighed tortoise, Testudo graeca illegally introduced in Italy. HVM Bioflux 2012; 4(2): 76–81.
Bertelloni F, Chemaly M, Cerri D, Gall FL, Ebani V. V. Salmonella infection in healthy pet reptiles: Bacteriological isolation and study of some pathogenic characters. Acta Microbiol Immunol Hung 2016; 63(2): 203–216.
Back DS, Shin GW, Wendt M, Heo GJ. Prevalence of Salmonella spp. in pet turtles and their environment. Lab Anim Res 2016; 32(3): 166–170.
Bluvias JE, Eckert KL. Marine Turtle Trauma Response Procedures: A Husbandry Manual, Wider Caribbean Sea Turtle Conservation Network (WIDECAST), 2008; pp 11–46.
CLSI. Performance standards for antimicrobial susceptibility testing: Twenty-fourth informational supplement: CLSI M100S24, Clinical and Laboratory Standards Institute (CLSI), Wayne, USA, 2014.
Giacopello C, Foti M, Fisichella V, Latella G, Aleo A, Mammina C. Antibiotic resistance in Salmonella isolated from tegus (Tupinambis spp.). J Exot Pet Med 2012; 21(4): 328–331.
Corrente M, Madio A, Friedrich KG, Greco G, Desario C, Tagliabue S, D’Incau M, Campolo M, Buonavoglia C. Isolation of Salmonella strains from reptile faeces and comparison of different culture media. J Appl Microbiol 2004; 96(4): 709–715.
Ferrari R, Galiana A, Cremades R, Rodríguez JC, Magnani M, Tognim MC, Oliveira TC, Royo G. Plasmid-mediated quinolone resistance (PMQR) and mutations in the topoisomerase genes of Salmonella enterica strains from Brazil. Braz J Microbiol 2013; 44(2): 651–656.
Gay K, Robicsek A, Strahilevitz J, Park CH, Jacoby G, Barrett TJ, Medalla F, Chiller TM, Hooper DC. Plasmid-mediated quinolone resistance in non-Typhi serotypes of Salmonella enterica. Clin Infect Dis 2006; 43(3): 297–304.
Nordmann P, Poirel L. Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J Antimicrob Chemother 2005; 56(3): 463–469.
Kim JH, Cho JK, Kim KS. Prevalence and characterization of plasmid-mediated quinolone resistance genes in Salmonella isolated from poultry in Korea. Avian Pathol 2013; 42(3): 221–229.
Asai T, Sato C, Masani K, Usui M, Ozawa M, Ogino T, Aoki H, Sawada T, Izumiya H, Watanabe H. Epidemiology of plasmid-mediated quinolone resistance in salmonella enterica serovar typhimurium isolates from food-producing animals in Japan. Gut Pathog 2010; 2(1): 17.
García-Fernández A, Gallina S, Owczarek S, Dionisi AM, Benedetti I, Decastelli L, Luzzi I. Emergence of Ciprofloxacin-Resistant Salmonella enterica Serovar Typhi in Italy. PLoS One 2015; 10(6): e0132065.
Kim SY, Lee SK, Park MS, Na HT. Analysis of the Fluoroquinolone Antibiotic Resistance Mechanism of Salmonella enterica Isolates. J Microbiol Biotechnol 2016; 26(9): 1605–1612.
Dimitrov T, Dashti AA, Albaksami O, Udo EE, Jadaon MM, Albert MJ. Ciprofloxacin-resistant Salmonella enterica serovar typhi from Kuwait with novel mutations in gyrA and parC genes. J Clin Microbiol 2009; 47(1): 208–211.
Amarantini C, Satwika D. Molecular phylogeny of Salmonellae: Relationships among Salmonella species determined from gyrA, gyrB, parC, and parE genes. Microbiol Indones 2015; 9(1): 1–8.
Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC. Prevalence in the United States of aac(6’)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother 2006; 50(11): 3953–3955.
Acknowledgments
This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A01060638).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
De Silva, B.C.J., Hossain, S., Wimalasena, S.H.M.P. et al. Quinolone susceptibility and genetic characterization of Salmonella enterica subsp. enterica isolated from pet turtles. Lab Anim Res 33, 49–56 (2017). https://doi.org/10.5625/lar.2017.33.2.49
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.5625/lar.2017.33.2.49
Keywords
- Salmonella enterica subsp. enterica
- quinolone susceptibility
- pet turtles
- qnr genes
- QRDR