Skip to main content

Age-dependent differences in myelin basic protein expression in the hippocampus of young, adult and aged gerbils

Abstract

Myelin degeneration is one of the characteristics of aging and degenerative diseases. This study investigated age-related alterations in expression of myelin basic protein (MBP) in the hippocampal subregions (dentate gyrus, CA2/3 and CA1 areas) of gerbils of various ages; young (1 month), adult (6 months) and aged (24 months), using western blot and immunohistochemistry. Western blot results showed tendencies of age-related reductions of MBP levels. MBP immunoreactivity was significantly decreased with age in synaptic sites of trisynaptic loops, perforant paths, mossy fibers, and Schaffer collaterals. In particular, MBP immunoreactive fibers in the dentate molecular cell layer (perforant path) was significantly reduced in adult and aged subjects. In addition, MBP immunoreactive mossy fibers in the dentate polymorphic layer and in the CA3 striatum radiatum was significantly decreased in the aged group. Furthermore, we observed similar age-related alterations in the CA1 stratum radiatum (Schaffer collaterals). However, the density of MBP immunoreactive fibers in the dentate granular cell layer and CA stratum pyramidale was decreased with aging. These findings indicate that expression of MBP is age-dependent and tissue specific according to hippocampal layers.

References

  1. 1.

    Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 2001; 81(2): 871–927.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Boggs JM. Myelin basic protein: a multifunctional protein. Cell Mol Life Sci 2006; 63(17): 1945–1961.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Harauz G, Ladizhansky V, Boggs JM. Structural polymorphism and multifunctionality of myelin basic protein. Biochemistry 2009; 48(34): 8094–8104.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Readhead C, Takasashi N, Shine HD, Saavedra R, Sidman R, Hood L. Role of myelin basic protein in the formation of central nervous system myelin. Ann N Y Acad Sci 1990; 605(1): 280–285.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Neves G, Cooke SF, Bliss TV. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 2008; 9(1): 65–75.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Neves G, Cooke SF, Bliss TV. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 2008; 9(1): 65–75.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Schuff N, Amend DL, Knowlton R, Norman D, Fein G, Weiner MW. Age-related metabolite changes and volume loss in the hippocampus by magnetic resonance spectroscopy and imaging. Neurobiol Aging 1999; 20(3): 279–285.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Feldman ML, Peters A. Ballooning of myelin sheaths in normally aged macaques. J Neurocytol 1998; 27(8): 605–614.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Peters A. The effects of normal aging on myelin and nerve fibers: a review. J Neurocytol 2002; 31(8): 581–593.

    PubMed  Article  Google Scholar 

  10. 10.

    Bartzokis G. Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging 2004; 25(1): 5–18.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Wang DS, Bennett DA, Mufson EJ, Mattila P, Cochran E, Dickson DW. Contribution of changes in ubiquitin and myelin basic protein to age-related cognitive decline. Neurosci Res 2004; 48(1): 93–100.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Chambers JS, Perrone-Bizzozero NI. Altered myelination of the hippocampal formation in subjects with schizophrenia and bipolar disorder. Neurochem Res 2004; 29(12): 2293–2302.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Davis KL, Stewart DG, Friedman JI, Buchsbaum M, Harvey PD, Hof PR, Buxbaum J, Haroutunian V. White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry 2003; 60(5): 443–456.

    PubMed  Article  Google Scholar 

  14. 14.

    Vanhooren V, Libert C. The mouse as a model organism in aging research: usefulness, pitfalls and possibilities. Ageing Res Rev 2013; 12(1): 8–21.

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Lee CH, Ahn JH, Park JH, Yan BC, Kim IH, Lee DH, Cho JH, Chen BH, Lee JC, Cho JH, Lee YL, Won MH, Kang IJ. Decreased insulin-like growth factor-I and its receptor expression in the hippocampus and somatosensory cortex of the aged mouse. Neurochem Res 2014; 39(4): 770–776.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Ahn JH, Chen BH, Shin BN, Cho JH, Kim IH, Park JH, Lee JC, Tae HJ, Lee YL, Lee J, Byun K, Jeong GB, Lee B, Kim SU, Kim YM, Won MH, Choi SY. Intravenously Infused F3.Olig2 Improves Memory Deficits via Restoring Myelination in the Aged Hippocampus Following Experimental Ischemic Stroke. Cell Transplant 2016; 25(12): 2129–2144.

    PubMed  Article  Google Scholar 

  17. 17.

    Ahn JH, Choi JH, Park JH, Kim IH, Cho JH, Lee JC, Koo HM, Hwangbo G, Yoo KY, Lee CH, Hwang IK, Cho JH, Choi SY, Kwon YG, Kim YM, Kang IJ, Won MH. Long-Term Exercise Improves Memory Deficits via Restoration of Myelin and Microvessel Damage, and Enhancement of Neurogenesis in the Aged Gerbil Hippocampus After Ischemic Stroke. Neurorehabil Neural Repair 2016; 30(9): 894–905.

    PubMed  Article  Google Scholar 

  18. 18.

    Tanaka J, Okuma Y, Tomobe K, Nomura Y. The age-related degeneration of oligodendrocytes in the hippocampus of the senescence-accelerated mouse (SAM) P8: a quantitative immunohistochemical study. Biol Pharm Bull 2005; 28(4): 615–618.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Xie F, Zhang JC, Fu H, Chen J. Age-related decline of myelin proteins is highly correlated with activation of astrocytes and microglia in the rat CNS. Int J Mol Med 2013; 32(5): 1021–1028.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Sloane JA, Hinman JD, Lubonia M, Hollander W, Abraham CR. Age-dependent myelin degeneration and proteolysis of oligodendrocyte proteins is associated with the activation of calpain-1 in the rhesus monkey. J Neurochem 2003; 84(1): 157–168.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Bowley MP, Cabral H, Rosene DL, Peters A. Age changes in myelinated nerve fibers of the cingulate bundle and corpus callosum in the rhesus monkey. J Comp Neurol 2010; 518(15): 3046–3064.

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Marner L, Nyengaard JR, Tang Y, Pakkenberg B. Marked loss of myelinated nerve fibers in the human brain with age. J Comp Neurol 2003; 462(2): 144–152.

    PubMed  Article  Google Scholar 

  23. 23.

    Peters A, Moss MB, Sethares C. Effects of aging on myelinated nerve fibers in monkey primary visual cortex. J Comp Neurol 2000; 419(3): 364–376.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Peters A, Sethares C. Aging and the myelinated fibers in prefrontal cortex and corpus callosum of the monkey. J Comp Neurol 2002; 442(3): 277–291.

    PubMed  Article  Google Scholar 

  25. 25.

    Ahn JH, Chen BH, Shin BN, Lee TK, Cho JH, Kim IH, Park JH, Lee JC, Tae HJ, Lee CH, Won MH, Lee YL, Choi SY, Hong S. Comparison of catalase immunoreactivity in the hippocampus between young, adult and aged mice and rats. Mol Med Rep 2016; 14(1): 851–856.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Hwang IK, Yoo KY, Jung BK, Cho JH, Kim DH, Kang TC, Kwon YG, Kim YS, Won MH. Correlations between neuronal loss, decrease of memory, and decrease expression of brain-derived neurotrophic factor in the gerbil hippocampus during normal aging. Exp Neurol 2006; 201(1): 75–83.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Morales FR, Boxer PA, Fung SJ, Chase MH. Basic electrophysiological properties of spinal cord motoneurons during old age in the cat. J Neurophysiol 1987; 58(1): 180–194.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Xi MC, Liu RH, Engelhardt JK, Morales FR, Chase MH. Changes in the axonal conduction velocity of pyramidal tract neurons in the aged cat. Neuroscience 1999; 92(1): 219–225.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Bartzokis G, Lu PH, Geschwind DH, Edwards N, Mintz J, Cummings JL. Apolipoprotein E genotype and age-related myelin breakdown in healthy individuals: implications for cognitive decline and dementia. Arch Gen Psychiatry 2006; 63(1): 63–72.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Moo-Ho Won or Choong-Hyun Lee.

Rights and permissions

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://doi.org/creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahn, J.H., Lee, TK., Park, J.H. et al. Age-dependent differences in myelin basic protein expression in the hippocampus of young, adult and aged gerbils. Lab Anim Res 33, 237–243 (2017). https://doi.org/10.5625/lar.2017.33.3.237

Download citation

Keywords

  • Myelin basic protein
  • aging
  • hippocampus
  • gerbil