Skip to main content

Lipolytic effect of novel extracts from mulberry (Morus alba) leaves fermented with Cordyceps militaris in the primary adipocytes derived from SD rats

Abstract

Mulberry (Morus alba) leaves are known to have therapeutic effects on lipid metabolism including lipogenesis, lipolysis and hyperlipidemia. However, novel compounds with strong lipolytic ability among 27 extracts of the mulberry leaves fermented with Cordyceps militaris (EMfCs) have not yet been identified. Therefore, the cAMP concentration and cell viability were measured in the primary adipocytes of SD (Sprague Dawley) rats and 3T3-L1 cells after treatment of 27 EMfCs. Briefly, mulberry leaves powders amended with three different concentrations (0, 25 and 50%) of silkworm pupae (SWP) powder were fermented with 10% C. militaris (v/w) during three different periods (3, 4 and 6 weeks). A total of 27 extracts were obtained from the fermented mulberry leaves powders using three different solvents (dH2O, 50% EtOH and 95% EtOH). Among the 27 EMfCs treated groups, a significant increase in the concentration of cAMP was detected in primary adipocytes treated with 10 extracts when compared with the Vehicle treated group. However, their cAMP concentration did not agree completely with the non-toxicity, although most extracts showed non-toxicity. Furthermore, the concentration of cAMP and level of free glycerol gradually increased in a dose dependent manner (100, 200 and 400μg/mL) of 4M3-95 contained cordycepin without any significant toxicity. Overall, the results of this study provide strong evidence that 4M3-95 extract derived from EMfCs can stimulate the lipolysis of primary adipocytes at an appropriate concentration and therefore have the potential for use as lipolytic agents to treat obesity.

References

  1. 1.

    Ho JN, Kim OK, Nam DE, Jun W, Lee J. Pycnogenol supplementation promotes lipolysis via activation of cAMP-dependent PKA in ob/ob mice and primary-cultured adipocytes. J Nutr Sci Vitaminol 2014; 60(6): 429–435.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Lafontan M, Langin D. Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res 2009; 48(5): 275–297.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Langin D, Dicker A, Tavernier G, Hoffstedt J, Mairal A, Rydén M, Arner E, Sicard A, Jenkins CM, Viguerie N, van Harmelen V, Gross RW, Holm C, Arner P. Adipocyte lipases and defect of lipolysis in human obesity. Diabetes 2005; 54(11): 3190–3197.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Carmen GY, Victor SM. Signaling mechanisms regulating lipolysis. Cell Signal 2006; 18(4): 401–408.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 2004; 306(5700): 1383–1386.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Ho JN, Jang JY, Yoon HG, Kim Y, Kim S, Jun W, Lee J. Antiobesity effect of a standardised ethanol extract from Curcuma longa L. fermented with Aspergillus oryzae in ob/ob mice and primary mouse adipocytes. J Sci Food Agric 2012; 92(9): 1833–1840.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Hansson B, Medina A, Fryklund C, Fex M, Stenkula KG. Serotonin (5-HT) and 5-HT2A receptor agonists suppress lipolysis in primary rat adipose cells. Biochem Biophys Res Commun 2016; 474(2): 357–363.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Bown D. Encyclopedia of herbs and their uses, Dorling Kindersley London, UK 1995; pp 313–314.

    Google Scholar 

  9. 9.

    Flores MB, Rocha GZ, Damas-souza DM, Osorio-costa F, Dias MM, Ropelle ER, Camargo JA, Carvalho RB, Carvalho HF, Saad MJ, Carvalheira JB. Obesity-induced increase in tumor necrosis factor-alpha leads to development of colon cancer in mice. Gastroenterol 2012; 143(3): 741–753.

    CAS  Article  Google Scholar 

  10. 10.

    Taniguchi S, Asano N, Tomino F, Miwa I. Potentiation of glucoseinduced insulin secretion by fagomine, a pseudo-sugar isolated from mulberry leaves. Horm Metab Res 1998; 30(11): 679–683.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Chen F, Nakashima N, Kimura I, Kimura M. Hypoglycemic activity and mechanisms of extracts from mulberry leaves (folium mori) and cortex mori radicis in streptozotocin-induced diabetic mice. Yakugaku Zasshi 1995; 115(6): 476–482.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Kobayashi A, Kang M, Watai Y, Tong KI, Shibata T, Uchida K, Yamamoto M. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keapl. Mol Cell Biol 2006; 26(1): 221–229.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Azman KF, Amom Z, Azlan A, Esa NM, Ali RM, Shah ZM, Kadir KK. Antiobesity effect of Tamarindus indica L. pulp aqueous extract in high-fat diet-induced obese rats. J Nat Med 2012; 66(2): 333–342.

    PubMed  Article  Google Scholar 

  14. 14.

    Ou TT, Hsu MJ, Chan KC, Huang CN, Ho HH, Wang CJ. Mulberry extract inhibits oleic acid-induced lipid accumulation via reduction of lipogenesis and promotion of hepatic lipid clearance. J Sci Food Agric 2011; 91(15): 2740–2748.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Ann JY, Eo H, and Li Y. Mulberry leaves (Morus alba L.) ameliorate obesity-induced hepatic lipogenesis, fibrosis, and oxidative stress in high-fat diet-fed mice. Genes Nutr 2015; 10(6): 46–58.

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Arabbi PR, Genovese MI, Lajolo FM. Flavonoids in vegetable foods commonly consumed in Brazil and estimated ingestion by the Brazilian population. J Agric Food Chem 2004; 52(5): 1124–1131.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Kobayashi Y, Miyazawa M, Kamei A, Abe K, Kojima T. Ameliorative effects of mulberry (Morus alba L.) leaves on hyperlipidemia in rats fed a high-fat diet: induction of fatty acid oxidation, inhibition of lipogenesis, and suppression of oxidative stress. Biosci Biotechnol Biochem 2010; 74(12): 2385–2395.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Yang SJ, Park NY, Lim Y. Anti-adipogenic effect of mulberry leaf ethanol extract in 3T3-L1 adipocytes. Nutr Res Pract 2014; 8(6): 613–617.

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Ann JY, Eo HY, Lim YS. Mulberry leaves (Mows albla L.) ameliorate obesity-induced hepatic lipogenesis, fibrosis, and oxidative stress in high-fat diet-fed mice. Genes Nutr 2015; 10: 46–58.

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Naowaboot J, Pannangpetch P, Kukongviriyapan V, Prawan A, Kukongviriyapan U, Itharat A. Mulberry leaf extract stimulates glucose uptake and GLUT4 translocation in rat adipocytes. Am J Chin Med 2012; 40(1): 163–175.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Sugimoto M, Arai H, Taura Y, Murayama T, Khaengkhan P, Nishio T, Ono K, Ariyasu H, Akamuzu T, Ueda Y, Kita T, Harada S, Kamei K, Yokode M. Mulberry leaf ameliorates the expression profile of adipocytokines by inhibiting oxidative stress in white adipose tissue in db/db mice. Atherosclerosis 2009; 204(2): 388–394.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Gao J, Lian ZQ, Zhu P, Zhu HB. Lipid-lowering effect of cordycepin (3?-deoxyadenosine) from Cordyceps militaris on hyperlipidemic hamsters and rats. Yao Xue Xue Bao. 2011;46(6): 669–676.

    CAS  PubMed  Google Scholar 

  23. 23.

    Lean ME. Pathophysiology of obesity. Proc Nutr Soc 2000; 59(3): 331–336.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Apostolopoulou M, Savopoulos C, Michalakis K, Coppack S, Dardavessis T, Hatzitolios A. Age, weight and obesity. Maturitas 2012; 71(2): 115–119.

    PubMed  Article  Google Scholar 

  25. 25.

    Morimoto C, Kameda K, Tsujita T, Okuda H. Relationships between lipolysis induced by various lipolytic agents and hormone-sensitive lipase in rat fat cells. J Lipid Res 2001; 42(1): 120–127.

    CAS  PubMed  Google Scholar 

  26. 26.

    Mayer MA, Hcht C, Puyü A, Taira CA. Recent advances in obesity pharmacotherapy. Curr Clin Pharmacol 2009; 4(1): 53–61.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Lee YJ, Choi DH, Kim EJ, Kim HY, Kwon TO, Kang DG, Lee HS. Hypotensive, hypolipidemic, and vascular protective effects of Morus alba L. in rats fed an atherogenic diet. Am J Chin Med 2011; 39(1): 39–52.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Chen J, Li X. Hypolipidemic effect of flavonoids from mulberry leaves in triton WR-1339 induced hyperlipidemic mice. Asia Pac J Clin Nutr 2007; 16: 290–294.

    CAS  PubMed  Google Scholar 

  29. 29.

    Parasuraman S. Toxicological screening. J Pharmacol Pharmacother 2011; 2(2): 74–79.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Oliveira AM, Mesquita Mda S, da Silva GC, de Oliveira Lima E, de Medeiros PL, Paiva PM, de Souza IA, Napoleão TH. Evaluation of toxicity and antimicrobial activity of an ethanolic extract from leaves of Morus alba L. (Moraceae). Evid Based Complement Alternat Med 2015; 2015: 513978.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Marx TK, Glâvits R, Endres JR, Palmer PA, Clewell AE, Murbach TS, Hirka G, Pasics I. A 28-day repeated dose toxicological study of an aqueous extract of Morus Alba L. Int J Toxicol 2016; 35(6): 683–691.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dae Youn Hwang.

Rights and permissions

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://doi.org/creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, M.R., Kim, J.E., Yun, W.B. et al. Lipolytic effect of novel extracts from mulberry (Morus alba) leaves fermented with Cordyceps militaris in the primary adipocytes derived from SD rats. Lab Anim Res 33, 270–279 (2017). https://doi.org/10.5625/lar.2017.33.3.270

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.5625/lar.2017.33.3.270

Keywords

  • Mulberry leaves
  • Lipolysis
  • Primary adipocytes
  • Glycerol
  • cAMP