Skip to main content

Changes of myelin basic protein in the hippocampus of an animal model of type 2 diabetes


In this study, we observed chronological changes in the immunoreactivity and expression level of myelin basic protein (MBP), one of the most abundant proteins in the central nervous system, in the hippocampus of Zucker diabetic fatty (ZDF) rats and their control littermates (Zucker lean control; ZLC). In the ZLC group, body weight steadily increased with age; the body weight of the ZDF group, however, peaked at 30 weeks of age, and subsequently decreased. Based on the changes of body weight, animals were divided into the following six groups: early (12-week), middle (30-week), and chronic (52-week) diabetic groups and their controls. MBP immunoreactivity was found in the alveus, strata pyramidale, and lacunosum-moleculare of the CA1 region, strata pyramidale and radiatum of the CA3 region, and subgranular zone, polymorphic layer, and molecular layer of the dentate gyrus. MBP immunoreactivity was lowest in the hippocampus of 12-week-old rats in the ZLC group, and highest in 12-week-old rats in the ZDF group. Diabetes increased MBP levels in the 12-week-old group, while MBP immunoreactivity decreased in the 30-week-old group. In the 52-week-old ZLC and ZDF groups, MBP immunoreactivity was detected in the hippocampus, similar to the 30-week-old ZDF group. Western blot results corroborated with immunohistochemical results. These results suggested that changes in the immunoreactivity and expression of MBP in the hippocampus might be a compensatory response to aging, while the sustained levels of MBP in diabetic animals could be attributed to a loss of compensatory responses in oligodendrocytes.


  1. 1.

    Benedict C, Grillo CA. Insulin Resistance as a Therapeutic Target in the Treatment of Alzheimer’s Disease: A State-of-the-Art Review. Front Neurosci 2018; 12: 215.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Salunkhe VA, Veluthakal R, Kahn SE, Thurmond DC. Novel approaches to restore beta cell function in prediabetes and type 2 diabetes. Diabetologia 2018; 61(9): 1895–1901.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Derakhshan F, Toth C. Insulin and the brain. Curr Diabetes Rev 2013; 9(2): 102–116.

    PubMed  Google Scholar 

  4. 4.

    Kalaria RN. Neurodegenerative disease: Diabetes, microvascular pathology and Alzheimer disease. Nat Rev Neurol 2009; 5(6): 305–306.

    PubMed  Google Scholar 

  5. 5.

    Bauduceau B, Doucet J, Bordier L, Garcia C, Dupuy O, Mayaudon H. Hypoglycaemia and dementia in diabetic patients. Diabetes Metab 2010; 36 Suppl 3: S106–S111.

    CAS  PubMed  Google Scholar 

  6. 6.

    Ravona-Springer R, Schnaider-Beeri M. The association of diabetes and dementia and possible implications for nondiabetic populations. Expert Rev Neurother 2011; 11(11): 1609–1617.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    De La Monte SM. Metabolic derangements mediate cognitive impairment and Alzheimer’s disease: role of peripheral insulinresistance diseases. Panminerva Med 2012; 54(3): 171–178.

    PubMed Central  Google Scholar 

  8. 8.

    McCrimmon RJ, Ryan CM, Frier BM. Diabetes and cognitive dysfunction. Lancet 2012; 379(9833): 2291–2299.

    PubMed  Google Scholar 

  9. 9.

    Yates KF, Sweat V, Yau PL, Turchiano MM, Convit A. Impact of metabolic syndrome on cognition and brain: a selected review of the literature. Arterioscler Thromb Vasc Biol 2012; 32(9): 2060–2067.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Wang B, Chandrasekera PC, Pippin JJ. Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes. Curr Diabetes Rev 2014; 10(2): 131–145.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Bray GA. The Zucker-fatty rat: a review. Fed Proc 1977; 36(2): 148–153.

    CAS  PubMed  Google Scholar 

  12. 12.

    Chua SC Jr, Chung WK, Wu-Peng XS, Zhang Y, Liu SM, Tartaglia L, Leibel RL. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 1996; 271(5251): 994–996.

    CAS  PubMed  Google Scholar 

  13. 13.

    Peterson R, Shaw W, Neel M, Little L, Eichberg J. Zucker diabetic fatty rat as a model for non-insulin-dependent diabetes mellitus. ILAR J 1990; 32(3): 16–19.

    Google Scholar 

  14. 14.

    Schmidt RE, Dorsey DA, Beaudet LN, Peterson RG. Analysis of the Zucker Diabetic Fatty (ZDF) type 2 diabetic rat model suggests a neurotrophic role for insulin/IGF-I in diabetic autonomic neuropathy. Am J Pathol 2003; 163(1): 21–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Yoo DY, Yim HS, Jung HY, Nam SM, Kim JW, Choi JH, Seong JK, Yoon YS, Kim DW, Hwang IK. Chronic type 2 diabetes reduces the integrity of the blood-brain barrier by reducing tight junction proteins in the hippocampus. J Ve t Med Sci 2016; 78(6): 957–962.

    CAS  Google Scholar 

  16. 16.

    Dhananjayan K, Gunawardena D, Hearn N, Sonntag T, Moran C, Gyengesi E, Srikanth V, Münch G. Activation of Macrophages and Microglia by Interferon-ã and Lipopolysaccharide Increases Methylglyoxal Production: A New Mechanism in the Development of Vascular Complications and Cognitive Decline in Type 2 Diabetes Mellitus? J Alzheimers Dis 2017; 59(2): 467–479.

    CAS  PubMed  Google Scholar 

  17. 17.

    Maldonado-Ruiz R, Montalvo-Martínez L, Fuentes-Mera L, Camacho A. Microglia activation due to obesity programs metabolic failure leading to type two diabetes. Nutr Diabetes 2017; 7(3): e254.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Hwang IK, Choi JH, Nam SM, Park OK, Yoo DY, Kim W, Yi SS, Won MH, Seong JK, Yoon YS. Activation of microglia and induction of pro-inflammatory cytokines in the hippocampus of type 2 diabetic rats. Neurol Res 2014; 36(9): 824–832.

    CAS  PubMed  Google Scholar 

  19. 19.

    Readhead C, Takasashi N, Shine HD, Saavedra R, Sidman R, Hood L. Role of myelin basic protein in the formation of central nervous system myelin. Ann N Y Acad Sci 1990; 605: 280–285.

    CAS  PubMed  Google Scholar 

  20. 20.

    Carré JL, Goetz BD, O’Connor LT, Bremer Q, Duncan ID. Mutations in the rat myelin basic protein gene are associated with specific alterations in other myelin gene expression. Neurosci Lett 2002; 330(1): 17–20.

    PubMed  Google Scholar 

  21. 21.

    Boggs JM, Rangaraj G. Interaction of lipid-bound myelin basic protein with actin filaments and calmoduli. Biochemistry 2000; 39(26): 7799–7806.

    CAS  PubMed  Google Scholar 

  22. 22.

    Hill CM, Libich DS, Harauz G. Assembly of tubulin by classic myelin basic protein isoforms and regulation by post-translational modification. Biochemistry 2005; 44(50): 16672–16683.

    CAS  PubMed  Google Scholar 

  23. 23.

    Tompa P. The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 2005; 579(15): 3346–3354.

    CAS  PubMed  Google Scholar 

  24. 24.

    Bamm VV, Ahmed MA, Harauz G. Interaction of myelin basic protein with actin in the presence of dodecylphosphocholine micelles. Biochemistry 2010; 49(32): 6903–6915.

    CAS  PubMed  Google Scholar 

  25. 25.

    Park JH, Choi HY, Cho JH, Kim IH, Lee TK, Lee JC, Won MH, Chen BH, Shin BN, Ahn JH, Tae HJ, Choi JH, Chung JY, Lee CH, Cho JH, Kang IJ, Kim JD. Effects of Chronic Scopolamine Treatment on Cognitive Impairments and Myelin Basic Protein Expression in the Mouse Hippocampus. J Mol Neurosci 2016; 59(4): 579–589.

    CAS  PubMed  Google Scholar 

  26. 26.

    Cermenati G, Giatti S, Audano M, Pesaresi M, Spezzano R, Caruso D, Mitro N, Melcangi RC. Diabetes alters myelin lipid profile in rat cerebral cortex: Protective effects of dihydroprogesterone. J Steroid Biochem Mol Biol 2017; 168: 60–70.

    CAS  PubMed  Google Scholar 

  27. 27.

    Pesaresi M, Giatti S, Calabrese D, Maschi O, Caruso D, Melcangi RC. Dihydroprogesterone increases the gene expression of myelin basic protein in spinal cord of diabetic rats. J Mol Neurosci 2010; 42(2): 135–139.

    CAS  PubMed  Google Scholar 

  28. 28.

    Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 2010; 8(6): e1000412.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Hwang IK, Yi SS, Kim YN, Kim IY, Lee IS, Yoon YS, Seong JK. Reduced hippocampal cell differentiation in the subgranular zone of the dentate gyrus in a rat model of type II diabetes. Neurochem Res 2008; 33(3): 394–400.

    CAS  PubMed  Google Scholar 

  30. 30.

    Nam SM, Kim JW, Yoo DY, Jung HY, Chung JY, Kim DW, Hwang IK, Yoon YS. Hypothyroidism increases cyclooxygenase-2 levels and pro-inflammatory response and decreases cell proliferation and neuroblast differentiation in the hippocampus. Mol Med Rep 2018; 17(4): 5782–5788.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Elsevier Academic Press, Amsterdam, 2007.

    Google Scholar 

  32. 32.

    Muñoz MC, Barberà A, Domínguez J, Fernàndez-Alvarez J, Gomis R, Guinovart JJ. Effects of tungstate, a new potential oral antidiabetic agent, in Zucker diabetic fatty rats. Diabetes 2001; 50(1): 131–138.

    PubMed  Google Scholar 

  33. 33.

    Torres TP, Catlin RL, Chan R, Fujimoto Y, Sasaki N, Printz RL, Newgard CB, Shiota M. Restoration of hepatic glucokinase expression corrects hepatic glucose flux and normalizes plasma glucose in zucker diabetic fatty rats. Diabetes 2009; 58(1): 78–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Povlsen JA, Løfgren B, Dalgas C, Birkler RI, Johannsen M, Støttrup NB, Bøtker HE. Protection against myocardial ischemia-reperfusion injury at onset of type 2 diabetes in Zucker diabetic fatty rats is associated with altered glucose oxidation. PLoS One 2013; 8(5): e64093.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Tanaka J, Okuma Y, Tomobe K, Nomura Y. The age-related degeneration of oligodendrocytes in the hippocampus of the senescence-accelerated mouse (SAM) P8: a quantitative immunohistochemical study. Biol Pharm Bull 2005; 28(4): 615–618.

    CAS  PubMed  Google Scholar 

  36. 36.

    Ahn JH, Chen BH, Shin BN, Cho JH, Kim IH, Park JH, Lee JC, Tae HJ, Lee YL, Lee J, Byun K, Jeong GB, Lee B, Kim SU, Kim YM, Won MH, Choi SY. Intravenously Infused F3.Olig2 Improves Memory Deficits via Restoring Myelination in the Aged Hippocampus Following Experimental Ischemic Stroke. Cell Transplant 2016; 25(12): 2129–2144.

    PubMed  Google Scholar 

  37. 37.

    Ábrahám H, Vincze A, Veszprémi B, Kravják A, Gömöri É, Kovács GG, Seress L. Impaired myelination of the human hippocampal formation in Down syndrome. Int J Dev Neurosci 2012; 30(2): 147–158.

    PubMed  Google Scholar 

  38. 38.

    Nam SM, Yoo DY, Kwon HJ, Kim JW, Jung HY, Kim DW, Han HJ, Won MH, Seong JK, Hwang IK, Yoon YS. Proteomic approach to detect changes in hippocampal protein levels in an animal model of type 2 diabetes. Neurochem Int 2017; 108: 246–253.

    CAS  PubMed  Google Scholar 

  39. 39.

    Winocur G, Greenwood CE. Studies of the effects of high fat diets on cognitive function in a rat model. Neurobiol Aging 2005; 26 Suppl 1: 46–49.

    PubMed  Google Scholar 

  40. 40.

    Moroz N, Tong M, Longato L, Xu H, de la Monte SM. Limited Alzheimer-type neurodegeneration in experimental obesity and type 2 diabetes mellitus. J Alzheimers Dis 2008; 15(1): 29–44.

    CAS  PubMed  Google Scholar 

  41. 41.

    Hussain S, Mansouri S, Sjöholm Å, Patrone C, Darsalia V. Evidence for cortical neuronal loss in male type 2 diabetic Goto-Kakizaki rats. J Alzheimers Dis 2014; 41(2): 551–560.

    PubMed  Google Scholar 

  42. 42.

    Macq AF, Goossens F, Maloteaux JM, Octave JN. Overexpression of the myelin basic protein RNA in the cortex of a patient with Alzheimer’s disease. Acta Neurol Belg 1989; 89(3–4): 316.

    Google Scholar 

  43. 43.

    Roher AE, Weiss N, Kokjohn TA, Kuo YM, Kalback W, Anthony J, Watson D, Luehrs DC, Sue L, Walker D, Emmerling M, Goux W, Beach T. Increased A beta peptides and reduced cholesterol and myelin proteins characterize white matter degeneration in Alzheimer’s disease. Biochemistry 2002; 41(37): 11080–11090.

    CAS  PubMed  Google Scholar 

  44. 44.

    Gil V, Nicolas O, Mingorance A, Ureña JM, Tang BL, Hirata T, Sáez-Valero J, Ferrer I, Soriano E, del Río JA. Nogo-A expression in the human hippocampus in normal aging and in Alzheimer disease. J Neuropathol Exp Neurol 2006; 65(5): 433–444.

    CAS  PubMed  Google Scholar 

  45. 45.

    Schiekofer S, Galasso G, Sato K, Kraus BJ, Walsh K. Impaired revascularization in a mouse model of type 2 diabetes is associated with dysregulation of a complex angiogenic-regulatory network. Arterioscler Thromb Vasc Biol 2005; 25(8): 1603–1609.

    CAS  PubMed  Google Scholar 

  46. 46.

    Zhang L, Chopp M, Zhang Y, Xiong Y, Li C, Sadry N, Rhaleb I, Lu M, Zhang ZG. Diabetes Mellitus Impairs Cognitive Function in Middle-Aged Rats and Neurological Recovery in Middle-Aged Rats After Stroke. Stroke 2016; 47(8): 2112–2118.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Kawashima R, Kojima H, Nakamura K, Arahata A, Fujita Y, Tokuyama Y, Saito T, Furudate S, Kurihara T, Yagishita S, Kitamura K, Tamai Y. Alterations in mRNA expression of myelin proteins in the sciatic nerves and brains of streptozotocin-induced diabetic rats. Neurochem Res 2007; 32(6): 1002–1010.

    CAS  PubMed  Google Scholar 

  48. 48.

    Rachana KS, Manu MS, Advirao GM. Insulin influenced expression of myelin proteins in diabetic peripheral neuropathy. Neurosci Lett 2016; 629: 110–115.

    CAS  PubMed  Google Scholar 

  49. 49.

    Dorsemans AC, Soulé S, Weger M, Bourdon E, Lefebvre d’ Hellencourt C, Meilhac O, Diotel N. Impaired constitutive and regenerative neurogenesis in adult hyperglycemic zebrafish. J Comp Neurol 2017; 525(3): 442–458.

    CAS  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yeo Sung Yoon.

Rights and permissions

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nam, S.M., Kwon, H.J., Kim, W. et al. Changes of myelin basic protein in the hippocampus of an animal model of type 2 diabetes. Lab Anim Res 34, 176–184 (2018).

Download citation


  • Myelin basic protein
  • type 2 diabetes
  • hippocampus
  • age