Skip to main content

Comparison of the anesthetic effects of 2,2,2-tribromoethanol on ICR mice derived from three different sources

Abstract

This study was conducted to compare the anesthetic effects of 2,2,2-tribromoethanol (TBE, Avertin®) in ICR mice obtained from three different sources. TBE (2.5%) was intraperitoneally injected at three doses: high-dose group (500 mg/kg), intermediate-dose group (250 mg/kg), and low-dose group (125 mg/kg). Anesthesia time, recovery time, end-tidal peak CO2 (ETCO2), mean arterial blood pressure, heart rate, oxygen saturation (SpO2), body temperature, pH, PCO2, and PO2 of the arterial blood were measured. Stable anesthesia was induced by all doses of TBE and the anesthesia time was maintained exhibited dose dependency. No significant differences in anesthetic duration were found among the three different strains. However, the anesthesia time was longer in female than in male mice, and the duration of anesthesia was significantly longer in female than in male mice in the high-dose group. The recovery time was significantly longer for female than male mice in the intermediate- and high-dose groups. In the ICR strains tested, there were no significant differences in the mean arterial blood pressure, SPO2, arterial blood PCO2, and PO2, which decreased after TBE anesthesia, or in heart rate and ETCO2, which increased after TBE anesthesia. In addition, body temperature, blood biochemical markers, and histopathological changes of the liver, kidney, and lung were not significantly changed by TBE anesthesia. These results suggested that ICR mice from different sources exhibited similar overall responses to a single exposure to TBE anesthesia. In conclusion, TBE is a useful drug that can induce similar anesthetic effects in three different strains of ICR mice.

References

  1. 1.

    Cui S, Chesson C, Hope R. Genetic variation within and betweenstrains of outbred Swiss mice. Lab Anim 1993; 27(3): 116–123.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Lehoczky JA, Cai WW, Douglas JA, Moran JL, Beier DR, Innis JW. Description and genetic mapping of Polypodia: an X-linked dominant mouse mutant with ectopic caudal limbs and other malformations. Mamm Genome 2006; 17(3): 903–913.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Al-Awar A, Kupai K, Veszelka M, Szûcs G, Attieh Z, Murlasits Z, Török S, Pósa A, Varga C. Experimental Diabetes Mellitus in Different Animal Models. J Diabetes Res 2016; 2016: 1–12.

    Article  CAS  Google Scholar 

  4. 4.

    Richardson CA, Flecknell PA. Anaesthesia and post-operative analgesia following experimental surgery in laboratory rodents: are we making progress? Altern Lab Anim 2005; 33(3): 119–127.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Naguib M, Gottumukkala V, Goldstein PA. Melatonin and anesthesia: a clinical perspective. J Pineal Res 2007; 42(3): 12–21.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Meyer RE, Fish RE. A review of tribromoethanol anesthesia for production of genetically engineered mice and rats. Lab Anim (NY) 2005; 34(10): 47–52.

    Article  Google Scholar 

  7. 7.

    Hill WA, Tubbs JT, Carter CL, Czarra JA, Newkirk KM, Sparer TE, Rohrbach B, Egger CM. Repeated administration of tribromoethanol in C57BL/6NHsd mice. J Am Assoc Lab Anim Sci 2013; 52(3): 176–179.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Papaioannou VE, Fox JG. Efficacy of tribromoethanol anesthesia in mice. Lab Anim Sci 1993; 43(3): 189–192.

    CAS  PubMed  Google Scholar 

  9. 9.

    Lieggi CC, Artwohl JE, Leszczynski JK, Rodriguez NA, Fickbohm BL, Fortman JD. Efficacy and safety of stored and newly prepared tribromoethanol in ICR mice. Contemp Top Lab Anim Sci 2005; 44(3): 17–22.

    CAS  PubMed  Google Scholar 

  10. 10.

    Voipio HM, Nevalainen T, Virtanen R. Evaluation of anaesthetic potency of medetomidine-ketamine combination in mice. IXth ICLAS International Symposium on Laboratory Animal Science Proceedings, Bangkok, 1988; pp 298–299.

    Google Scholar 

  11. 11.

    Mulder JB. Anesthesia in the mouse using a combination of ketamine and promazine. Lab Anim Sci 1978; 28: 70–71.

    CAS  PubMed  Google Scholar 

  12. 12.

    Arras M, Autenried P, Rettich A, Spaeni D, Rülicke T. Optimization of intraperitoneal injection anesthesia in mice: drugs, dosages, adverse effects, and anesthesia depth. Comp Med 2001; 51(3): 443–456.

    CAS  PubMed  Google Scholar 

  13. 13.

    Wixson SK, White WJ, Hughes HC Jr, Lang CM, Marshall WK. The effects of pentobarbital, fentanyl-droperidol, ketaminexylazine and ketamine-diazepam on arterial blood pH, blood gases, mean arterial blood pressure and heart rate in adult male rats. Lab Anim Sci 1987; 37(3): 736–742.

    CAS  PubMed  Google Scholar 

  14. 14.

    Chu DK, Jordan MC, Kim JK, Couto MA, Roos KP. Comparing isoflurane with tribromoethanol anesthesia for echocardiographic phenotyping of transgenic mice. J Am Assoc Lab Anim Sci 2006; 45(3): 8–13.

    CAS  PubMed  Google Scholar 

  15. 15.

    Fish RE. Pharmacology of injectable anesthetics. In: Anesthesia and Analgesia in Laboratory Animals, Academic Press, New York, 1997; pp 1–28.

    Google Scholar 

  16. 16.

    Weiss J, Zimmermann F. Tribromoethanol (Avertin) as an anaesthetic in mice. Lab Anim 1999; 33(3): 192–193.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Brown ET, Umino Y, Loi T, Solessio E, Barlow R. Anesthesia can cause sustained hyperglycemia in C57/BL6J mice. Vis Neurosci 2005; 22(3): 615–618.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Kubo Y, Tahara Y, Hirao A, Shibata S. 2,2,2-Tribromoethanol phase-shifts the circadian rhythm of the liver clock in Per2::Luciferase knockin mice: lack of dependence on anesthetic activity. J Pharmacol Exp Ther 2012; 340(4): 698–705.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Norton WB, Scavizzi F, Smith CN, Dong W, Raspa M, Parker-Thornburg JV. Refinements for embryo implantation surgery in the mouse: comparison of injectable and inhalant anesthesias -tribromoethanol, ketamine and isoflurane -on pregnancy and pup survival. Lab Anim 2016; 50(50): 335–343.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Oh SS, Hayes JM, Sims-Robinson C, Sullivan KA, Feldman EL. The effects of anesthesia on measures of nerve conduction velocity in male C57Bl6/J mice. Neurosci Lett 2010; 483(4): 127–131.

    Google Scholar 

  21. 21.

    Hogan B, Costantini F, Lacy E. Manipulating the mouse embryo: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1986.

    Google Scholar 

  22. 22.

    Buetow BS, Chen LI, Maggio-Price L, Swisshelm K. Peritonitis in Nude Mice in a Xenograft Study. Contemp Top Lab Anim Sci 1999; 38(3): 47–49.

    PubMed  Google Scholar 

  23. 23.

    Kohn DF, Wixson SK, White WJ, Benson GJ. Anesthesia and Analgesia in Laboratory Animals. Academic Press, San Diego, 1997.

    Google Scholar 

  24. 24.

    Gardner DJ, Davis JA, Weina PJ, Theune B. Comparison of tribromoethanol, ketamine/acetylpromazine, Telazol/xylazine, pentobarbital, and methoxyflurane anesthesia in HSD:ICR mice. Lab Anim Sci 1995; 45(3): 199–204.

    CAS  PubMed  Google Scholar 

  25. 25.

    Koizumi T, Maeda H, Hioki K. Sleep-time variation for ethanol and the hypnotic drugs tribromoethanol, urethane, pentobarbital, and propofol within outbred ICR mice. Exp Anim 2002; 51(3): 119–124.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Flecknell PA. Chapter 3, Analgesic management. In: Laboratory Animal Anaesthesia, 3rd ed, Academic Press, London, 2009.

    Google Scholar 

  27. 27.

    Hart CY, Burnett JC Jr, Redfield MM. Effects of avertin versus xylazine-ketamine anesthesia on cardiac function in normal mice. Am J Physiol Heart Circ Physiol 2001; 281(4): H1938-H1945.

    Google Scholar 

  28. 28.

    Rousselon S, Coat M, Nguyen BV, Gouny P, Nowak E, Wargnier JP, Arvieux CC, Gueret G. [Comparison between ETCO2 values measured by the Smart Capnoline™ and the PACO2 in intubated then extubated postoperative cardiac surgery patients]. Ann Fr Anesth Reanim 2011; 30(3): 13–16.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    American Heart Association. 2005 American Heart Association (AHA) guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiovascular care (ECC) of pediatric and neonatal patients: pediatric advanced life support. Pediatrics 2006; 117(4): e1005-e1028.

    Google Scholar 

  30. 30.

    Benallal H, Busso T. Analysis of end-tidal and arterial PCO2 gradients using a breathing model. Eur J Appl Physiol 2000; 83(4-5): 402–408.

    Article  Google Scholar 

  31. 31.

    Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ. Normal values. Arterial and end-tidal carbon dioxide tensions. In: Principles of exercise testing and interpretation, 4th ed, Lippincott Williams & Wilkins, Philadelphia, 2005.

    Google Scholar 

  32. 32.

    Enghoff H. Volumen inefficax: Bemerkungen zur frage des schädlichen raumes. Upsala Lakareforen Forh 1938; 44: 191–218.

    Google Scholar 

  33. 33.

    Roth DM, Swaney JS, Dalton ND, Gilpin EA, Ross J Jr. Impact of anesthesia on cardiac function during echocardiography in mice. Am J Physiol Heart Circ Physiol 2002; 282(4): H2134–H2140.

    Article  Google Scholar 

  34. 34.

    Lieggi CC, Artwohl JE, Leszczynski JK, Rodriguez NA, Fickbohm BL, Fortman JD. Efficacy and safety of stored and newly prepared tribromoethanol in ICR mice. Contemp Top Lab Anim Sci 2005; 44(3): 17–22.

    CAS  PubMed  Google Scholar 

  35. 35.

    Zeller W, Meier G, Bürki K, Panoussis B. Adverse effects of tribromoethanol as used in the production of transgenic mice. Lab Anim 1998; 32(3): 407–413.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Flecknell PA. Chapter 2, Anesthesia. In: Laboratory Animal Anaesthesia, 3rd ed, Academic Press, London, 2009.

    Google Scholar 

  37. 37.

    Boyd RL, Halderman LW, Harris JO, Mangos JA. Strain differences in pulmonary function of laboratory rats. Lab Anim Sci 1982; 32(3): 42–43.

    CAS  PubMed  Google Scholar 

  38. 38.

    Thompson JS, Brown SA, Khurdayan V, Zeynalzadedan A, Sullivan PG, Scheff SW. Early effects of tribromoethanol, ketamine/xylazine, pentobarbitol, and isoflurane anesthesia on hepatic and lymphoid tissue in ICR mice. Comp Med 2002; 52(3): 63–67.

    CAS  PubMed  Google Scholar 

  39. 39.

    Goelz MF. Anesthetic and pathologic effects of tribromoethanol in mice. Toxicology Bibliographic Information (Toxline), 1994.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kil Soo Kim.

Rights and permissions

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://doi.org/creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, M.R., Suh, H.R., Kim, M.W. et al. Comparison of the anesthetic effects of 2,2,2-tribromoethanol on ICR mice derived from three different sources. Lab Anim Res 34, 270–278 (2018). https://doi.org/10.5625/lar.2018.34.4.270

Download citation

Keywords

  • Anesthesia effect
  • Korl:ICR mice
  • pulse oximeter
  • sex difference
  • tribromoethanol