Comparison of the anesthetic effects of 2,2,2-tribromoethanol on ICR mice derived from three different sources
Laboratory Animal Research volumeĀ 34,Ā pages 270ā278 (2018)
Abstract
This study was conducted to compare the anesthetic effects of 2,2,2-tribromoethanol (TBE, AvertinĀ®) in ICR mice obtained from three different sources. TBE (2.5%) was intraperitoneally injected at three doses: high-dose group (500 mg/kg), intermediate-dose group (250 mg/kg), and low-dose group (125 mg/kg). Anesthesia time, recovery time, end-tidal peak CO2 (ETCO2), mean arterial blood pressure, heart rate, oxygen saturation (SpO2), body temperature, pH, PCO2, and PO2 of the arterial blood were measured. Stable anesthesia was induced by all doses of TBE and the anesthesia time was maintained exhibited dose dependency. No significant differences in anesthetic duration were found among the three different strains. However, the anesthesia time was longer in female than in male mice, and the duration of anesthesia was significantly longer in female than in male mice in the high-dose group. The recovery time was significantly longer for female than male mice in the intermediate- and high-dose groups. In the ICR strains tested, there were no significant differences in the mean arterial blood pressure, SPO2, arterial blood PCO2, and PO2, which decreased after TBE anesthesia, or in heart rate and ETCO2, which increased after TBE anesthesia. In addition, body temperature, blood biochemical markers, and histopathological changes of the liver, kidney, and lung were not significantly changed by TBE anesthesia. These results suggested that ICR mice from different sources exhibited similar overall responses to a single exposure to TBE anesthesia. In conclusion, TBE is a useful drug that can induce similar anesthetic effects in three different strains of ICR mice.
References
Cui S, Chesson C, Hope R. Genetic variation within and betweenstrains of outbred Swiss mice. Lab Anim 1993; 27(3): 116ā123.
Lehoczky JA, Cai WW, Douglas JA, Moran JL, Beier DR, Innis JW. Description and genetic mapping of Polypodia: an X-linked dominant mouse mutant with ectopic caudal limbs and other malformations. Mamm Genome 2006; 17(3): 903ā913.
Al-Awar A, Kupai K, Veszelka M, SzĆ»cs G, Attieh Z, Murlasits Z, Tƶrƶk S, Pósa A, Varga C. Experimental Diabetes Mellitus in Different Animal Models. J Diabetes Res 2016; 2016: 1ā12.
Richardson CA, Flecknell PA. Anaesthesia and post-operative analgesia following experimental surgery in laboratory rodents: are we making progress? Altern Lab Anim 2005; 33(3): 119ā127.
Naguib M, Gottumukkala V, Goldstein PA. Melatonin and anesthesia: a clinical perspective. J Pineal Res 2007; 42(3): 12ā21.
Meyer RE, Fish RE. A review of tribromoethanol anesthesia for production of genetically engineered mice and rats. Lab Anim (NY) 2005; 34(10): 47ā52.
Hill WA, Tubbs JT, Carter CL, Czarra JA, Newkirk KM, Sparer TE, Rohrbach B, Egger CM. Repeated administration of tribromoethanol in C57BL/6NHsd mice. J Am Assoc Lab Anim Sci 2013; 52(3): 176ā179.
Papaioannou VE, Fox JG. Efficacy of tribromoethanol anesthesia in mice. Lab Anim Sci 1993; 43(3): 189ā192.
Lieggi CC, Artwohl JE, Leszczynski JK, Rodriguez NA, Fickbohm BL, Fortman JD. Efficacy and safety of stored and newly prepared tribromoethanol in ICR mice. Contemp Top Lab Anim Sci 2005; 44(3): 17ā22.
Voipio HM, Nevalainen T, Virtanen R. Evaluation of anaesthetic potency of medetomidine-ketamine combination in mice. IXth ICLAS International Symposium on Laboratory Animal Science Proceedings, Bangkok, 1988; pp 298ā299.
Mulder JB. Anesthesia in the mouse using a combination of ketamine and promazine. Lab Anim Sci 1978; 28: 70ā71.
Arras M, Autenried P, Rettich A, Spaeni D, Rülicke T. Optimization of intraperitoneal injection anesthesia in mice: drugs, dosages, adverse effects, and anesthesia depth. Comp Med 2001; 51(3): 443ā456.
Wixson SK, White WJ, Hughes HC Jr, Lang CM, Marshall WK. The effects of pentobarbital, fentanyl-droperidol, ketaminexylazine and ketamine-diazepam on arterial blood pH, blood gases, mean arterial blood pressure and heart rate in adult male rats. Lab Anim Sci 1987; 37(3): 736ā742.
Chu DK, Jordan MC, Kim JK, Couto MA, Roos KP. Comparing isoflurane with tribromoethanol anesthesia for echocardiographic phenotyping of transgenic mice. J Am Assoc Lab Anim Sci 2006; 45(3): 8ā13.
Fish RE. Pharmacology of injectable anesthetics. In: Anesthesia and Analgesia in Laboratory Animals, Academic Press, New York, 1997; pp 1ā28.
Weiss J, Zimmermann F. Tribromoethanol (Avertin) as an anaesthetic in mice. Lab Anim 1999; 33(3): 192ā193.
Brown ET, Umino Y, Loi T, Solessio E, Barlow R. Anesthesia can cause sustained hyperglycemia in C57/BL6J mice. Vis Neurosci 2005; 22(3): 615ā618.
Kubo Y, Tahara Y, Hirao A, Shibata S. 2,2,2-Tribromoethanol phase-shifts the circadian rhythm of the liver clock in Per2::Luciferase knockin mice: lack of dependence on anesthetic activity. J Pharmacol Exp Ther 2012; 340(4): 698ā705.
Norton WB, Scavizzi F, Smith CN, Dong W, Raspa M, Parker-Thornburg JV. Refinements for embryo implantation surgery in the mouse: comparison of injectable and inhalant anesthesias -tribromoethanol, ketamine and isoflurane -on pregnancy and pup survival. Lab Anim 2016; 50(50): 335ā343.
Oh SS, Hayes JM, Sims-Robinson C, Sullivan KA, Feldman EL. The effects of anesthesia on measures of nerve conduction velocity in male C57Bl6/J mice. Neurosci Lett 2010; 483(4): 127ā131.
Hogan B, Costantini F, Lacy E. Manipulating the mouse embryo: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1986.
Buetow BS, Chen LI, Maggio-Price L, Swisshelm K. Peritonitis in Nude Mice in a Xenograft Study. Contemp Top Lab Anim Sci 1999; 38(3): 47ā49.
Kohn DF, Wixson SK, White WJ, Benson GJ. Anesthesia and Analgesia in Laboratory Animals. Academic Press, San Diego, 1997.
Gardner DJ, Davis JA, Weina PJ, Theune B. Comparison of tribromoethanol, ketamine/acetylpromazine, Telazol/xylazine, pentobarbital, and methoxyflurane anesthesia in HSD:ICR mice. Lab Anim Sci 1995; 45(3): 199ā204.
Koizumi T, Maeda H, Hioki K. Sleep-time variation for ethanol and the hypnotic drugs tribromoethanol, urethane, pentobarbital, and propofol within outbred ICR mice. Exp Anim 2002; 51(3): 119ā124.
Flecknell PA. Chapter 3, Analgesic management. In: Laboratory Animal Anaesthesia, 3rd ed, Academic Press, London, 2009.
Hart CY, Burnett JC Jr, Redfield MM. Effects of avertin versus xylazine-ketamine anesthesia on cardiac function in normal mice. Am J Physiol Heart Circ Physiol 2001; 281(4): H1938-H1945.
Rousselon S, Coat M, Nguyen BV, Gouny P, Nowak E, Wargnier JP, Arvieux CC, Gueret G. [Comparison between ETCO2 values measured by the Smart Capnoline⢠and the PACO2 in intubated then extubated postoperative cardiac surgery patients]. Ann Fr Anesth Reanim 2011; 30(3): 13ā16.
American Heart Association. 2005 American Heart Association (AHA) guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiovascular care (ECC) of pediatric and neonatal patients: pediatric advanced life support. Pediatrics 2006; 117(4): e1005-e1028.
Benallal H, Busso T. Analysis of end-tidal and arterial PCO2 gradients using a breathing model. Eur J Appl Physiol 2000; 83(4-5): 402ā408.
Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ. Normal values. Arterial and end-tidal carbon dioxide tensions. In: Principles of exercise testing and interpretation, 4th ed, Lippincott Williams & Wilkins, Philadelphia, 2005.
Enghoff H. Volumen inefficax: Bemerkungen zur frage des schƤdlichen raumes. Upsala Lakareforen Forh 1938; 44: 191ā218.
Roth DM, Swaney JS, Dalton ND, Gilpin EA, Ross J Jr. Impact of anesthesia on cardiac function during echocardiography in mice. Am J Physiol Heart Circ Physiol 2002; 282(4): H2134āH2140.
Lieggi CC, Artwohl JE, Leszczynski JK, Rodriguez NA, Fickbohm BL, Fortman JD. Efficacy and safety of stored and newly prepared tribromoethanol in ICR mice. Contemp Top Lab Anim Sci 2005; 44(3): 17ā22.
Zeller W, Meier G, Bürki K, Panoussis B. Adverse effects of tribromoethanol as used in the production of transgenic mice. Lab Anim 1998; 32(3): 407ā413.
Flecknell PA. Chapter 2, Anesthesia. In: Laboratory Animal Anaesthesia, 3rd ed, Academic Press, London, 2009.
Boyd RL, Halderman LW, Harris JO, Mangos JA. Strain differences in pulmonary function of laboratory rats. Lab Anim Sci 1982; 32(3): 42ā43.
Thompson JS, Brown SA, Khurdayan V, Zeynalzadedan A, Sullivan PG, Scheff SW. Early effects of tribromoethanol, ketamine/xylazine, pentobarbitol, and isoflurane anesthesia on hepatic and lymphoid tissue in ICR mice. Comp Med 2002; 52(3): 63ā67.
Goelz MF. Anesthetic and pathologic effects of tribromoethanol in mice. Toxicology Bibliographic Information (Toxline), 1994.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://doi.org/creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Lee, M.R., Suh, H.R., Kim, M.W. et al. Comparison of the anesthetic effects of 2,2,2-tribromoethanol on ICR mice derived from three different sources. Lab Anim Res 34, 270ā278 (2018). https://doi.org/10.5625/lar.2018.34.4.270
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.5625/lar.2018.34.4.270
Keywords
- Anesthesia effect
- Korl:ICR mice
- pulse oximeter
- sex difference
- tribromoethanol