Skip to main content

Flavonoids as therapeutics for myocardial ischemia-reperfusion injury: a comprehensive review on preclinical studies

Abstract

Ischemic heart disease is the most prevalent cause of death worldwide affecting both the gender of all age groups. The high mortality rate is due to damage of myocardial tissue that emanates at the time of myocardial ischemia and re-oxygenation, thus averting reperfusion injury is recognized as a potential way to reduce acute cardiac injury and subsequent mortality. Flavonoids are polyphenol derivatives of plant origin and empirical shreds of evidence substantiate their numerous activities such as antioxidant, anti-inflammatory, anti-apoptotic, and anti-thrombotic activity, leading to their role in cardio protection. Recent investigations have unveiled the capacity of flavonoids to impede pivotal regulatory enzymes, signaling molecules, and transcription factors that orchestrate the mediators participating in the inflammatory cascade. The present comprehensive review, dwells on the preclinical studies on the effectiveness of flavonoids from the year 2007 to 2023, for the prevention and therapeutics for myocardial ischemia-reperfusion injury.

Graphical Abstract

Background

Ischemic heart disease [IHD] is the most prevalent cause of mortality worldwide and accounts for a 2.3-fold rise in the incidence rate of IHD in India [1, 2]. IHD refers to occlusion due to atherosclerosis leading to the inadequate blood supply to the region of the heart or in a broad term, the heart is not getting enough blood and oxygen due to blockage of coronary arteries which transports blood to the myocardium [3]. IHD accounted for 8.9 million deaths in the year 2019, attributed to 16% of total deaths globally [4]. The currently available treatment for IHD is the restoration of blood in the ischemic heart muscles either by surgery or pharmacological therapy [5]. The several available therapy methods that can restore blood flow are coronary artery bypass grafting (CABG), percutaneous coronary intervention (PCI), etc. However, abrupt reperfusion leads to myocardial ischemia/reperfusion injury (MIRI). MIRI causes more structural and dysfunctional damage to cardiomyocytes on resuming blood perfusion than before reperfusion. Also, the rising mortality rate occurs due to myocardial damage that emanates at the time of re-oxygenation of the ischemic myocardium [6]. Therefore, finding a novel therapeutic strategy to prevent patients with a high risk of MIRI is quint essential [7]. Several animal studies and clinical trials have shown that a series of pretreatment methods account for the phenomena of ischemic tolerance. However, among different pretreatment methods such as the pharmacological intervention of beta-blockers, antiplatelets drugs, angiotensin-converting enzyme (ACE) inhibitors, fibrinolytic, calcium channel blockers (CCB), nitrates, cholesterol-lowering agents, exercise, and hypoxia, ischemic pretreatment (IP) has been proved to be the effective protective mechanisms because of its application in the prevention of primary and secondary prophylaxis of IHD [7]. Additionally, the ischemic reperfusion area through surgical procedures or pharmacological treatment causes the oxygen rush in the ischemic area, subsequently leading to oxidative stress by the formation of oxygen free radicals/ROS. Therefore, averting reperfusion damage is a pivotal way to overcome morbidity of acute cardiac injury as discussed in Fig. 1 [8].

Fig. 1
figure 1

Surgical procedure followed to cause Myocardial Ischemia-Reperfusion Injury (MIRI) in in vivo models

Flavonoids have the inherent capability to combat numerous human diseases [9]. On a global scale, the rising prevalence of overweight and obese individuals has led to a significant surge in concurrent medical conditions, underscoring the imperative for improved therapeutic approaches. The positive influence of flavonoids on obesity and associated ailments is attributable to their anti-inflammatory action [10]. Inflammation-evoked reactions/responses significantly participate in the pathogenesis of several ailments such as diabetes, asthma, cardiovascular disorders, and cancer. The inflammatory cascade is a complex interaction involving the recruitment of various immune cells, driven by pro-inflammatory triggers. These immune cells subsequently generate chemokines and pro-inflammatory cytokines that serve as chemo-attractants for lymphocytes, thereby activating adaptive immune response. Within the context of this inflammatory cascade, the generation of oxygen free radicals, reactive nitrogen species (RNS), and a diverse array of proteases ensues, each of which holds the potential to precipitate tissue damage, fibrogenesis, and cellular proliferation, broadly can contribute to the perpetuation of chronic inflammation [11].

As inflammation already initiates during ischemic events, the subsequent reinstatement of blood circulation and oxygen supply amplifies the activation of inflammatory signaling pathways. Ongoing research endeavours are dedicated to probing the inflammatory molecules and cascade involved in ischemic injury, with a particular focus on pivotal factors such as interleukins (IL), neutrophils, and inflammasomes (Fig. 2) [12]. Also, it has been demonstrated that consumption of flavonoids protects against incidences of IHD, suggesting that flavonoids may enhance tolerance to MIRI [8, 13]. The present review will provide insight into the preclinical studies towards the effectiveness of flavonoids in IR injury. These flavonoids have an effective role in cardioprotection and could be taken further to the clinics after well-designed clinical studies.

Fig. 2
figure 2

Mechanism involved in the damage from Myocardial Ischemia-reperfusion injury and the role of flavonoids at various point in different studies

Main text

Myocardial ischemia is characterized by damaged myocardial tissue. ROS causing severe myocardial cell damage has been demonstrated in the chick model of simulated IR injury in cardiomyocytes [14]. The reperfusion in the ischemic region of the heart paradoxically initiates myocardial injury characterized by myocardial apoptosis/ necrosis/ necroptosis and pyroptosis/ ferroptosis. Broadly, during reperfusion of ischemic myocardium, oxidative stress, and ionic disturbance are primarily attributed to myocardial IR injury. During reperfusion, ionic disturbances and increased oxygen free radicals activate signaling pathways leading to cardiomyocyte death in severe cases [15]. This cell death releases damage-associated molecular patterns (DAMPs), mitochondrial DNA fragmentation, high mobility group box 1 protein (HMGB1), ATP, and calcium. These DAMPS activate TLR9 and NLRP3-inflammasome formation, triggering inflammatory responses. Subsequently, nuclear factor-κB (NF-κB) and myeloid differentiation primary response gene 88 (MyD88) pathways get activated resulting in the release of inflammatory molecules like interleukin-1β (IL-1β), monocyte-chemoattractant protein 1 (MCP1), tumor necrosis factor (TNF), IL-6, and IL-18. Furthermore, activation of inflammasome augments secretion of IL-1β and IL-18 via cardiac fibroblasts, leading to apoptosis of cardiomyocytes by increased expression of caspase-1 known as pyroptosis. In addition, leukotriene B4 (LTB4), cytokine-induced neutrophil chemoattractant 1 (CINC-1), macrophage inflammatory protein-2α (MIP-2α), complement 5a, IL-8 and CXCL8 amplifies recruitment of neutrophils to infiltrate in damaged area after the onset of ischemia which further leads to overproduction of ROS and releases granular components composed of proteases and myeloperoxidase, to remove apoptotic bodies as well as necrotic debris.

Despite neutrophils, activated complement constituting 30 proteins and protein fragments also get infiltrated at the reperfused area resulting in augmentation of inflammation and damage, derived by complement pathway [Fig. 2]. Further, monocyte recruitment occurs at the site of the reperfused area due to chemokines (MCP1) and complement fragments (C3a, C4a, and C5a). Importantly, monocytes arise from the bone marrow and are secreted in the bloodstream via 2 ways: (a) Ly6Chi monocytes are characterized by inflammatory activity, released in blood stream and peak after 3–4 days of post-myocardial infarction. (b) Ly6Clow monocytes are characterized by anti-inflammatory activity and peak on the 7th day after myocardial infarction. The Ly6Chi monocytes acts by removing debris through phagocytosis at the reperfused damaged area. In addition, monocytes (Ly6Chi) differentiate into M1-type macrophages, characterized by phagocytic activity, and produce ROS, resulting in enhanced inflammation. Later, Ly6Clow monocytes start infiltrating in the reperfused damaged region and M1-type macrophages differentiate into M2-type macrophages resulting in suppression of T-cell activation by secreting TGF-β and IL-10. In addition, TGF-β functions in tissue remodelling and vascularization. Moreover, Th1-inducing factors prevent a shift of M1 to an M2-type of macrophages thus reducing the healing potential of chronic myocardial. Thereby, IR injury emanates into two phases: acute and delayed phase. During the acute phase, oxidative stress is primarily generated through the mitochondrial electron transport chain (ETC) and xanthine oxidase pathway. Inflammatory reactions occur due to cytokines from damaged cells leading to enhanced ROS levels, later during the delayed phase [16]. At each phase during the pathophysiology of IHD, flavonoids could be used for the amelioration of ischemic reperfused tissue.

Flavonoids are polyphenolic compounds naturally found in plant sources including vegetables and fruits. Several preclinical studies have evidenced the antioxidant activity of these compounds by in vitro and in vivo models of oxidative stress. Also, clinical studies have demonstrated the consumption of flavonoids from fruits, vegetables, and tea at recommended doses decreases the incidence of IHD [17, 18].

Classifications of flavonoids

Over 4000 different flavonoid compounds have been identified from plants. These flavonoid compounds based on their chemical structure are categorised into flavonols, flavones, isoflavones, flavanones, and flavanonols as given in Table 1. Phenol benzopyrone skeleton (C6-C3-C6) remains the common entity between these groups.

Table 1 Different Chemical Class of flavonoids, constituents and its sources

Mechanisms associated with flavonoids in the prevention of IR injury

Free radicle scavenging and antioxidant activity

Previous studies have reported that flavonoids exhibit ROS-scavenging properties, and reduce oxidative damage during myocardial IR injury. Flavonoids also scavenge peroxy-nitrite, superoxide, and peroxide radicals. Despite this, flavonoids prevent the Fenton reaction by forming complexes with iron [19]. Fanton reaction is an advanced oxidation process (AOP) that decomposes hydrogen peroxide using iron and generates hydroxyl ions [20]. Xanthine oxidase and NADPH oxidase play vital role in the generation of oxygen free radical. Many flavonoids such as apigenin, luteolin, quercetin, kaempferol, and myricetin, have been demonstrated to impede these oxidases and subsequently inhibit the production of ROS [21].

Chelation of transition metals

Flavonoids have been shown to chelate iron and copper which plays an important role in free radical generation. Chelation of iron leads to the prevention of free radical generation by the Fenton reaction [22].

Effect on myocardial apoptosis

Several preclinical studies have demonstrated that flavonoids have a role in cardio protection by depleting pro-apoptotic factors (BAX, BAD, and BID), and cytosolic proteases including caspase-3, caspase-8 and caspase-9. Moreover, flavonoids like fisetin, kaempferol, mangiferin, hesperidin, naringenin, baicalein, genistein, luteolin, morin, nobiletin, quercetin, etc. act by inhibiting cytoplasmic proteases.

Anti-inflammatory activity

Several flavonoids possess anti-inflammatory and anti-aggregatory properties. Studies revealed that the flavonoids inhibit matrix metalloproteinases (MMPs), which participate in tissue remodelling by degrading extracellular matrix components. The increased plasma levels of MMPs have been reported during myocardial IR injury [23]. Flavonoids such as fisetin, kaempferol, baicalein, diadzein, genistein, luteolin, morin, and quercetin work by suppressing the activation of NF-κB leading to inhibition of pro-inflammatory cytokines (IL-6 and TNF-α). Furthermore, myocardial IR injury leads to acute inflammation in the myocardium where neutrophils infiltrate and subsequently progress the myocardium injury. Flavonoids have been demonstrated to protect against myocardial IR injury by inhibiting pro-inflammatory cytokines (IL-6, IFN-γ, and TNF-α). Several evidences have shown that flavonoids act as an anti-inflammatory via inhibiting activation of the NF-κB and AP-1 transcription factors [23]. The targeted molecular pathway of flavonoids is explained in Fig. 3.

Fig. 3
figure 3

Key Molecular pathways involved and studied to investigate the effect of flavonoid in myocardial ischemia-reperfusion injury (MIRI) in vitro, in vivo, and ex vivo models of myocardial Infarction

Flavonoids and molecular pathways associated with the prevention and therapeutics of myocardial IR injury

Fisetin (3,3,4,7-Tetrahydroxyflavone) is a flavone isolated from vegetables and fruits. An ex vivo study on an isolated rat heart showed that a fisetin dose of 20 mg/kg by intraperitoneal route significantly decreases myocardial IR injury by its antioxidant activity and downregulating glycogen synthase kinase 3 beta (GSK-3B) [24]. Furthermore, an in vitro study conducted on H9c2 cardiocytes reported that fisetin treatment at a concentration of 15 µM stimulates the viability of cardiomyocytes, inhibits apoptosis, and activates cytosolic caspases (caspase 3, 8, and 9), reduces the generation of ROS and protects from DNA damage [25]. An in vivo study demonstrated that fisetin at a dose of 10 mg/kg and 20 mg/kg protects against myocardial IR injury by downregulating RAGE and NF-κB levels [26].

Kaempferol (3,5,7-Trihydroxy-2-(4-hydroxyphenyl)-4 H-1-benzopyran-4-one) is a flavanol and isolated from various plants such as Witch-hazel, Delphinium, and grapefruit [27]. Several preclinical studies have demonstrated that kaempferol treatment significantly protects against myocardial IR injury via reducing apoptosis, GSK-3 beta activity and inhibiting the expressions of endoplasmic reticulum (ER) stress proteins [28,29,30]. Numerous in vitro studies reported that kaempferol treatment attenuates myocardial IR injury by reducing pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), and by inhibiting pro-apoptotic proteins (Bax & caspase-3) and stimulating expression of anti-apoptotic protein Bcl-2 [31, 32].

Mangiferin (1,3,6,7-Tetrahydroxyxanthone-C2-β-D-glucoside) C-glucosyl xanthone) is found in leaves, stem bark, fruit peels, and roots of Mangifera indica (mango) with antioxidant, and antidiabetic activity [33]. Numerous studies have revealed that treatment with mangiferin protects from IR injury by reducing the phosphorylation of p38 and JNK and increasing the phosphorylation of ERK 1/2. Mangiferin treatment also reduces and increases the expression of pro-apoptotic and anti-apoptotic proteins respectively. [34,35,36].

Hesperidin (30, 5, 9-Dihydroxy-40-methoxy-7-Orutinosyl) is a flavanone extracted from citrus fruits, and has anti-inflammatory, antioxidant, and anticancer properties. Plethora of preclinical data reported that hesperidin improves myocardial IR injury by decreasing the plasma levels of oxidative stress and pro-inflammatory cytokines [37,38,39,40]. Other preclinical studies reported that hesperidin play a role in cardioprotection by inhibiting HMGB1 and activating PI3K/AKT pathways [41, 42].

Naringenin (4,5,7-Trihydroxy flavanone) is a flavanone found in citrus fruits, and characterized by antioxidant, anti-inflammatory, anti-apoptosis, and anticancer properties. Several in vitro and ex vivo studies revealed that naringenin attenuates myocardial IR injury by inhibiting mitochondrial oxidative stress and endoplasmic reticulum (ER) stress [43,44,45,46].

Catechin (flavan-3-ol) is a bioactive polyphenol found in green tea and characterized by antioxidant, antioncogenic, and antiviral properties. A study reported that baicalin protects against myocardial IR injury when given just after reperfusion [47]. Another in vitro by Cong and his co-workers showed that treatment with catechin augments mitochondrial function and reduces apoptosis by encouraging activation of Akt / Gsk-3β [48]. Recently, a meta-analysis study demonstrated that epigallocatechin gallate (EGCG) significantly alleviates oxidative stress, myocardial injury enzyme, and cardiac function in myocardial IR injury animal models [49].

Daidzein (7,4′-Dihydroxyisoflavone) is a phenolic compound that belongs to the phytoestrogens class and is found in soybeans & soy products and plants such as the Thai Kwao Krua [50]. A preclinical study conducted on an animal model of IR by Kim et al., in 2009 reported that daidzein depletes the plasma levels of TNF-α, IL-6, myeloperoxidase, catalase activity along with reduced malondialdehyde levels. Also, it inhibits myocardial apoptosis via reducing DNA strand breaks, and caspase-3 activity, along with downregulation of activated NF-κB transcription factor [51]. Moreover, it has been demonstrated to attenuate doxorubicin-induced cardiac injury via impeding apoptosis and autophagy [52]. A previous study by Shu et al. reported that daidzein decreases the activation of TGF-β1-induced cardiac fibroblast by TGF-β1/ SMAD2/3 signaling pathways [53].

Genistein (4′,5,7-Trihydroxyisoflavone) is a polyphenolic isoflavone and is extracted from dietary vegetables, such as fava beans and soybeans. Several preclinical studies have reported that genistein attenuate myocardial IR injury by decreasing myocardial apoptosis (lower Bcl2/ Bax ratio and Bax expression) and necrosis. Apart from this, genistein also reduces the pro-inflammatory cytokines such as IL-6, IL-8, IL-10, and TNF-𝛼 as evidenced from the previous studies [54, 55].

Luteolin (3′,4′,5,7-Tetrahydroxyflavone) is a flavone, isolated from leaves and rinds, ragweed pollen, broccoli, pepper, thyme, celery, and barks [56]. Primitive studies reported that luteolin ameliorates myocardial IR injury through reduced myocardial necrosis and apoptosis [57]. It has been shown that luteolin acts by upregulating and downregulating the expression of anti-apoptotic protein (Bcl-2) and pro-apoptotic protein (BAX) respectively. Preclinical studies showed that the anti-apoptotic and anti-inflammatory properties of luteolin play a vital role in the improvement of myocardial IR injury [58, 59]. Furthermore, previous studies have demonstrated the inhibitory effect of luteolin on IR injury-induced SERCA2a activity [57, 60, 61].

Morin (2′,3,4′,5,7-Pentahydroxyflavone) is a natural polyphenol and is extracted from stems, branches, leaves, and fruits of different plants. An in vitro study demonstrated that morin ameliorates myocardial IR injury via its anti-apoptotic activity and by impeding the opening of myocardial mitochondrial permeability transition pores (MPTP) [62]. Morin functions via decreasing cytosolic caspase-3 & Bax and augmenting the anti-apoptotic protein levels (Bcl-2). Moreover, it also reduces myocardial inflammation by regulating inflammatory mediators such as TNF-α, IKKβ, NFκB, and IL-6) in the myocardium [62,63,64].

Nobiletin (O-methylated flavone) is a flavonoid found in citrus peels. An in vitro study reported that nobiletin improves myocardial IR injury by downregulating pro-inflammatory cytokines levels involving TNF-α, IL-6, IL-1β, and MDA levels [65]. In addition, nobiletin reduces the Bcl-2 level while increasing the Bax and caspase − 3 levels. Effects of nobiletin in cardiomyocytes were shown to be accomplished by stimulating the Akt/GSK-3β pathway. A preclinical study reported that nobiletin improves myocardial IR injury by upregulating p-PI3K & p-AKT levels [66, 67].

Quercetin (3,5,7,3’,4’-Pentahydroxyflavone) is a polyphenolic compound found in onions, berries, grapes, broccoli, cherries, and citrus fruits and comprises different biological activities including antioxidant, anticoagulant, and anti-inflammatory activities [68, 69]. Various studies have demonstrated the role of quercetin in improving myocardial IR injury by stimulating the PI3K/Akt signaling pathway, and peroxisome proliferator–activated receptor gamma (PPAR-γ). Also, evidence from in vitro study have proved that quercetin improved myocardial IR injury by reducing the pro-inflammatory cytokines (IL-10 and TNF-α) [70]. A study showed quercetin in combination with cinnamaldehyde improves inflammation, myocardial infarction, and apoptosis in isoproterenol-induced rats via cleaved caspase-3 signaling, NF-κB, and P65 molecules [71]. Various preclinical studies evaluated the potent role of flavonoids in the prevention and therapeutics of IR injury along with doses used and results obtained are summarized separately for in vivo (Table 2), ex vivo (Table 3), and in vitro (Table 4).

Table 2 Preclinical studies evaluating the potential of flavonoids in the prevention and treatment of myocardial ischemia-reperfusion injury (MIRI) in-vivo
Table 3 Role of selected flavonoids in the prevention/ treatment of MIRI in ex-vivo experiments (Langendroff-model)
Table 4 In-vitro studies evaluating the potential of flavonoids in the prevention and treatment of myocardial ischemia-reperfusion injury (MIRI) mimicking hypoxia-reoxygenation (H/R)

Conclusion

Multiple preclinical studies have demonstrated and provided evidence for cardio-protective applications of flavonoids in attenuating myocardial IR injury, and also shown their role in pleiotropic pathways such as the inherent ability to ameliorate oxidative stress, inhibit apoptosis, and reduce inflammation. The antioxidant activity is influenced by increasing levels of glutathione and by decreasing levels of superoxide dismutase and malondialdehyde. Moreover, the anti-inflammatory role of flavonoids is governed by downregulating transcription of NF-κB subsequently inhibiting the generation of various pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α). In addition, the anti-apoptotic activity of flavonoids is accomplished by inhibiting cytosolic proteases including caspase-3, caspase-8, and caspase-9.

Even though numerous preclinical studies have evidenced the potent characteristics of flavonoids in the amelioration of IR injury, a comprehensive assessment of their dosages and potential adverse effects is essential before any recommended therapeutic utilization. Furthermore, given the pivotal role that flavonoids play, there is a pressing imperative to explore novel reservoirs of these bioactive compounds. Diverse botanical specimens historically utilized in Ayurveda, Siddha, and Unani medicinal traditions are replete with flavonoids, thus warranting deliberate investigation for their extraction. Thus, there is a dire need for clinical studies for the extensive exploration of flavonoids for their potential role in myocardium protection.

Data availability

The data of this study was collected from online resources only.

Abbreviations

8-OHdG:

8-hydroxy-2’ -deoxyguanosine

APAF:

Apoptotic protease activating factor

ASC:

Apoptosis-associated speck-like protein containing CARD

AST:

Aspartate transaminase

BAX:

Bcl-2–associated X protein

Bcl-2:

B-cell lymphoma 2

CK-MB:

Creatine Kinase-Myocardial Band

CPK:

Creatine phosphokinase

CREB:

Cyclic-AMP response-binding protein

cTnI:

Cardiac troponin I

DHE:

Dihydroethidium

ERK:

Extracellular signal-regulated kinase

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSK:

Glycogen synthase kinase

HR:

Heart Rate

IHD:

Ischemic Heart Disease

IKKα:

Inhibitory Kappa B Kinaseα

IL:

Interleukin

IR:

Ischemia Reperfusion

IRE1α:

Inositol-requiring transmembrane kinase/endoribonuclease 1α

LDH:

Lactate Dehydrogenase

LV dp/dt:

Rate of change in left ventricular pressure

LVEDP:

Left ventricular end diastolic pressure

LVF:

Left Ventricular Function

MDA:

Malonaldehyde

MIAT:

Myocardial infarction associated transcript

MIRI:

Myocardial Ischemia-Reperfusion Injury

MPO:

Myeloperoxidase

NLRP3:

NLR family pyrin domain containing 3

NO:

Nitric oxide

Pre-op:

Pre operation / before surgery

RAGE:

Receptor of advanced glycation end-products

ROS:

Reactive Oxygen Species

SOD:

Super Oxide Dismutase

TBRAS:

Thiobarbituric acid reactive substance

TLR:

Toll-like receptor

TNF:

Tumour Necrosis Factor

References

  1. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70:1–25.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kalra A, Jose AP, Arun P, Prabhakaran P, Kumar Ashish, Agrawal A et al. The burgeoning cardiovascular disease epidemic in indians – perspectives on contextual factors and potential solutions. 2023;12:100156.

  3. Wenger NK, Mischke JM, Schroeder R, Schroeder K, Collins P, Grady D, et al. Electrocardiograms of menopausal women with coronary heart disease or at increased risk for its occurrence. Am J Cardiol. 2010;106(11):1580–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang L, Tong Z, Han R, Guo R, Zang S, Zhang X, et al. Global, Regional, and National burdens of Ischemic Heart Disease Attributable to Smoking from 1990 to 2019. J Am Heart Assoc. 2023;12(3):e028193.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kahkonen O, Saaranen T, Kankkunen P, Miettinen H, Kyngäs H. Adherence to treatment of female patients with Coronary Heart Disease after a percutaneous coronary intervention. J Cardiovasc Nurs. 2019;34(5):410–7.

    Article  PubMed  Google Scholar 

  6. He J, Liu D, Zhao L, Zhou D, Rong J, Zhang L, et al. Myocardial ischemia/reperfusion injury: mechanisms of injury and implications for management (review). Exp Ther Med. 2022;23(6):430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang J, Zhu L, Li H, Tang Q. Electroacupuncture pretreatment as a Novel Avenue to protect heart against Ischemia and Reperfusion Injury. Evid Based Complement Alternat Med. 2020;2020:9786482.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang J, Yang L, Rezaie AR, Li J. Activated protein C protects against myocardial ischemic/reperfusion injury through AMP-activated protein kinase signaling. J Thromb Haemost. 2011;9(7):1308–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, et al. Important flavonoids and their role as a therapeutic Agent. Molecules. 2020;25(22):5243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Russo C, Maugeri A, Musumeci L, De Sarro G, Cirmi S, Navarra M. Inflammation and obesity: the pharmacological role of flavonoids in the zebrafish model. Int J Mol Sci. 2023;24(3):2899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Al-Khayri JM, Sahana GR, Nagella P, Joseph BV, Alessa FM, Al-Mssallem MQ. Flavonoids as potential anti-inflammatory molecules: a review. Molecules. 2022;27(9):2901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Algoet M, Janssens S, Himmelreich U, Gsell W, Pusovnik M, Van den Eynde J, et al. Myocardial ischemia-reperfusion injury and the influence of inflammation. Trends Cardiovasc Med. 2023;33(6):357–66.

    Article  CAS  PubMed  Google Scholar 

  13. Sanchez M, Romero M, Gómez-Guzmán M, Tamargo J, Pérez-Vizcaino F, Duarte J. Cardiovascular effects of flavonoids. Curr Med Chem. 2019;26(39):6991–7034.

    Article  CAS  PubMed  Google Scholar 

  14. Majumder S, Ilayaraja M, Seerapu HR, Sinha S, Siamwala JH, Chatterjee S. Chick embryo partial ischemia model: a new approach to study ischemia ex vivo. PLoS ONE. 2010;5(5):e10524.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Akhlaghi M, Bandy B. Mechanisms of flavonoid protection against myocardial ischemia-reperfusion injury. J Mol Cell Cardiol. 2009;46(3):309–17.

    Article  CAS  PubMed  Google Scholar 

  16. Choi EK, Lim DG. Hepatic ischemia-reperfusion injury with respect to oxidative stress and inflammatory response: a narrative review. J Yeungnam Med Sci. 2023;40(2):115–22.

    Article  CAS  PubMed  Google Scholar 

  17. Huxley RR, Neil HA. The relation between dietary flavonol intake and coronary heart disease mortality: a meta-analysis of prospective cohort studies. Eur J Clin Nutr. 2003;57(8):904–8.

    Article  CAS  PubMed  Google Scholar 

  18. Li L, Li DH, Qu N, Wen WM, Huang WQ. The role of ERK1/2 signaling pathway in coronary microembolization-induced rat myocardial inflammation and injury. Cardiology. 2010;117(3):207–15.

    Article  CAS  PubMed  Google Scholar 

  19. Perron NR, Brumaghim JL. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys. 2009;53(2):75–100.

    Article  CAS  PubMed  Google Scholar 

  20. Abe C, Miyazawa T, Miyazawa T. Current use of Fenton reaction in drugs and food. Molecules. 2022;27(17):5451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Slika H, Mansour H, Wehbe N, Nasser SA, Iratni R, Nasrallah G, et al. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed Pharmacother. 2022;146:112442.

    Article  CAS  PubMed  Google Scholar 

  22. Prochazkova D, Bousova I, Wilhelmova N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011;82(4):513–23.

    Article  CAS  PubMed  Google Scholar 

  23. Lee JS, Oh TY, Kim YK, Baik JH, So S, Hahm KB, et al. Protective effects of green tea polyphenol extracts against ethanol-induced gastric mucosal damages in rats: stress-responsive transcription factors and MAP kinases as potential targets. Mutat Res. 2005;579(1–2):214–24.

    Article  CAS  PubMed  Google Scholar 

  24. Shanmugam K, Ravindran S, Kurian GA, Rajesh M. Fisetin confers Cardioprotection against Myocardial Ischemia Reperfusion Injury by suppressing mitochondrial oxidative stress and mitochondrial dysfunction and inhibiting glycogen synthase kinase 3β activity. Oxid Med Cell Longev. 2018;2018:9173436.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rodius S, de Klein N, Jeanty C, Sánchez-Iranzo H, Crespo I, Ibberson M, et al. Fisetin protects against cardiac cell death through reduction of ROS production and caspases activity. Sci Rep. 2020;10(1):2896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garg S, Malhotra RK, Khan SI, Sarkar S, Susrutha PN, Singh V, et al. Fisetin attenuates isoproterenol-induced cardiac ischemic injury in-vitro by suppressing RAGE/NF-κB mediated oxidative stress, apoptosis and inflammation. Phytomedicine. 2019;56:147–55.

    Article  CAS  PubMed  Google Scholar 

  27. Rajendran P, Rengarajan T, Nandakumar N, Palaniswami R, Nishigaki Y, Nishigaki I. Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur J Med Chem. 2014;86:103–12.

    Article  CAS  PubMed  Google Scholar 

  28. Kim DS, Ha KC, Kwon DY, Kim MS, Kim HR, Chae SW, et al. Kaempferol protects ischemia/reperfusion-induced cardiac damage through the regulation of endoplasmic reticulum stress. Immunopharmacol Immunotoxicol. 2008;30(2):257–70.

    Article  CAS  PubMed  Google Scholar 

  29. Guo Z, Liao Z, Huang L, Liu D, Yin D, He M. Kaempferol protects cardiomyocytes against anoxia/reoxygenation injury via mitochondrial pathway mediated by SIRT1. Eur J Pharmacol. 2015;761:245–53.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou YJ, Wang H, Li L, Sui HH, Huang JJ. Inhibitory effect of kaempferol on inflammatory response of lipopolysaccharide-stimulated human mast cells. Yao Xue Xue Bao. 2015;50(6):702–7.

    CAS  PubMed  Google Scholar 

  31. Suchal K, Malik S, Gamad N, Malhotra RK, Goyal SN, Chaudhary U, et al. Kaempferol attenuates myocardial ischemic Injury via inhibition of MAPK Signaling Pathway in experimental model of myocardial ischemia-reperfusion Injury. Oxid Med Cell Longev. 2016;2016:7580731.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Suchal K, Malik S, Khan SI, Malhotra RK, Goyal SN, Bhatia J, et al. Molecular pathways involved in the Amelioration of Myocardial Injury in Diabetic rats by Kaempferol. Int J Mol Sci. 2017;18(5):1001.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Du Y, Liu P, Xu T, Pan D, Zhu H, Zhai N, et al. Luteolin modulates SERCA2a leading to attenuation of myocardial Ischemia/ reperfusion Injury via Sumoylation at Lysine 585 in mice. Cell Physiol Biochem. 2018;45(3):883–98.

    Article  CAS  PubMed  Google Scholar 

  34. Suchal K, Malik S, Gamad N, Malhotra RK, Goyal SN, Ojha S, et al. Mangiferin protect myocardial insults through modulation of MAPK/TGF-β pathways. Eur J Pharmacol. 2016;776:34–43.

    Article  CAS  PubMed  Google Scholar 

  35. Suchal K, Malik S, Khan SI, Malhotra RK, Goyal SN, Bhatia J, et al. Protective effect of mangiferin on myocardial ischemia-reperfusion injury in streptozotocin-induced diabetic rats: role of AGE-RAGE/MAPK pathways. Sci Rep. 2017;7:42027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu F, Zhang H, Li Y, Lu X. Nobiletin suppresses oxidative stress and apoptosis in H9c2 cardiomyocytes following hypoxia/reoxygenation injury. Eur J Pharmacol. 2019;854:48–53.

    Article  CAS  PubMed  Google Scholar 

  37. Gandhi C, Upaganalawar A, Balaraman R. Protection against in-vitro focal myocardial ischemia/reperfusion injury-induced arrhythmias and apoptosis by hesperidin. Free Radic Res. 2009;43(9):817–27.

    Article  CAS  PubMed  Google Scholar 

  38. Agrawal YO, Sharma PK, Shrivastava B, Ojha S, Upadhya HM, Arya DS, et al. Hesperidin produces cardioprotective activity via PPAR-γ pathway in ischemic heart disease model in diabetic rats. PLoS ONE. 2014;9(11):e111212.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liu P, Li J, Liu M, Zhang M, Xue Y, Zhang Y, et al. Hesperetin modulates the Sirt1/Nrf2 signaling pathway in counteracting myocardial ischemia through suppression of oxidative stress, inflammation, and apoptosis. Biomed Pharmacother. 2021;139:111552.

    Article  CAS  PubMed  Google Scholar 

  40. Liu P, Chen J, Qi J, Liu M, Zhang M, Xue Y, et al. Hesperetin ameliorates ischemia/hypoxia-induced myocardium injury via inhibition of oxidative stress, apoptosis, and regulation of Ca2 + homeostasis. Phytother Res. 2023;37(5):1787–805.

    Article  CAS  PubMed  Google Scholar 

  41. Li X, Hu X, Wang J, Xu W, Yi C, Ma R, et al. Short-term hesperidin pretreatment attenuates rat myocardial Ischemia/Reperfusion Injury by Inhibiting High Mobility Group Box 1 protein expression via the PI3K/Akt pathway. Cell Physiol Biochem. 2016;39(5):1850–62.

    Article  CAS  PubMed  Google Scholar 

  42. Li X, Hu X, Wang J, Xu W, Yi C, Ma R, et al. Inhibition of autophagy via activation of PI3K/Akt/mTOR pathway contributes to the protection of hesperidin against myocardial ischemia/reperfusion injury. Int J Mol Med. 2018;42(4):1917–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Meng LM, Ma HJ, Guo H, Kong QQ, Zhang Y. The cardioprotective effect of naringenin against ischemia-reperfusion injury through activation of ATP-sensitive potassium channel in rat. Can J Physiol Pharmacol. 2016;94(9):973–8.

    Article  CAS  PubMed  Google Scholar 

  44. Tang JY, Jin P, He Q, Lu LH, Ma JP, Gao WL, et al. Naringenin ameliorates hypoxia/reoxygenation-induced endoplasmic reticulum stress-mediated apoptosis in H9c2 myocardial cells: involvement in ATF6, IRE1α and PERK signaling activation. Mol Cell Biochem. 2017;424(1–2):111–22.

    Article  CAS  PubMed  Google Scholar 

  45. Yu LM, Dong X, Zhang J, Li Z, Xue XD, Wu HJ, et al. Naringenin attenuates myocardial ischemia-reperfusion Injury via cGMP-PKGIα signaling and in vitro and in Vitro studies. Oxid Med Cell Longev. 2019;2019:7670854.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xu S, Wu B, Zhong B, Lin L, Ding Y, Jin X, et al. Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) /System xc-/ glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis. Bioengineered. 2021;12(2):10924–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chang WT, Shao ZH, Yin JJ, Mehendale S, Wang CZ, Qin Y, et al. Comparative effects of flavonoids on oxidant scavenging and ischemia-reperfusion injury in cardiomyocytes. Eur J Pharmacol. 2007;566(1–3):58–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cong L, Su Y, Wei D, Qian L, Xing D, Pan J, et al. Catechin relieves hypoxia/reoxygenation-induced myocardial cell apoptosis via down-regulating lncRNA MIAT. J Cell Mol Med. 2020;24(3):2356–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wei XY, Zeng YF, Guo QH, Liu JJ, Yin N, Liu Y, et al. Cardioprotective effect of epigallocatechin gallate in myocardial ischemia/reperfusion injury and myocardial infarction: a meta-analysis in preclinical animal studies. Sci Rep. 2023;13(1):14050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ubaid M, Salauddin, Shadani MA, Kawish SM, Albratty M, Makeen HA, et al. Daidzein from Dietary supplement to a drug candidate: an evaluation of potential. ACS Omega. 2023;8(36):32271–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim JW, Jin YC, Kim YM, Rhie S, Kim HJ, Seo HG, et al. Daidzein administration in-vitro reduces myocardial injury in a rat ischemia/reperfusion model by inhibiting NF-kappa B activation. Life Sci. 2009;84(7–8):227–34.

    Article  CAS  PubMed  Google Scholar 

  52. Wu J, Li K, Liu Y, Feng A, Liu C, Adu-Amankwaah J, et al. Daidzein ameliorates doxorubicin-induced cardiac injury by inhibiting autophagy and apoptosis in rats. Food Funct. 2023;14(2):934–45.

    Article  CAS  PubMed  Google Scholar 

  53. Shu J, Hu L, Wu Y, Chen L, Huang K, Wang Z, et al. Daidzein suppresses TGF-β1-induced cardiac fibroblast activation via the TGF-β1/SMAD2/3 signaling pathway. Eur J Pharmacol. 2022;919:174805.

    Article  CAS  PubMed  Google Scholar 

  54. Prem PN, Sivakumar B, Boovarahan SR, Kurian GA. Recent advances in potential of Fisetin in the management of myocardial ischemia-reperfusion injury-A systematic review. Phytomedicine. 2022;101:154123.

    Article  CAS  PubMed  Google Scholar 

  55. Jafari S, Shoghi M, Khazdair MR. Pharmacological effects of Genistein on Cardiovascular diseases. Evid Based Complement Alternat Med. 2023;2023:8250219.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nabavi SF, Braidy N, Gortzi O, Sobarzo-Sanchez E, Daglia M, Skalicka-Woźniak K, et al. Luteolin as an anti-inflammatory and neuroprotective agent: a brief review. Brain Res Bull. 2015;119(Pt A):1–11.

    Article  CAS  PubMed  Google Scholar 

  57. Pan Q, Liu Y, Ma W, Kan R, Zhu H, Li D. Cardioprotective effects and possible mechanisms of Luteolin for Myocardial Ischemia-Reperfusion Injury: a systematic review and Meta-analysis of preclinical evidence. Front Cardiovasc Med. 2022;9:685998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu T, Li D, Jiang D. Targeting cell signaling and apoptotic pathways by luteolin: cardioprotective role in rat cardiomyocytes following ischemia/reperfusion. Nutrients. 2012;4(12):2008–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pan D, Li D. At the crossroads from bench to bedside: luteolin is a promising pharmacological agent against myocardial ischemia reperfusion injury. Ann Transl Med. 2016;4(23):475.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wu X, Xu T, Li D, Zhu S, Chen Q, Hu W, et al. ERK/PP1a/PLB/SERCA2a and JNK pathways are involved in luteolin-mediated protection of rat hearts and cardiomyocytes following ischemia/reperfusion. PLoS ONE. 2013;8(12):e82957.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nai C, Xuan H, Zhang Y, Shen M, Xu T, Pan D, et al. Luteolin exerts cardioprotective effects through improving sarcoplasmic reticulum ca (2+)-ATPase activity in rats during Ischemia/Reperfusion In-vitro. Evid Based Complement Alternat Med. 2015;2015:365854.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Liu S, Wu N, Miao J, Huang Z, Li X, Jia P, et al. Protective effect of morin on myocardial ischemiareperfusion injury in rats. Int J Mol Med. 2018;42(3):1379–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Verma VK, Malik S, Narayanan SP, Mutneja E, Sahu AK, Bhatia J, et al. Role of MAPK/NF-κB pathway in cardioprotective effect of Morin in isoproterenol induced myocardial injury in rats. Mol Biol Rep. 2019;46(1):1139–48.

    Article  CAS  PubMed  Google Scholar 

  64. Verma VK, Malik S, Mutneja E, Sahu AK, Bhatia J, Arya DS. Attenuation of ROS-mediated myocardial ischemia-reperfusion injury by morin via regulation of RISK/SAPK pathways. Pharmacol Rep. 2020;72(4):877–89.

    Article  CAS  PubMed  Google Scholar 

  65. Liu K, Wang F, Wang S, Li WN, Ye Q. Mangiferin attenuates myocardial ischemia-reperfusion Injury via MAPK/Nrf-2/HO-1/NF-κB in Vitro and In-vitro. Oxid Med Cell Longev. 2019;2019:7285434.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhang BF, Jiang H, Chen J, Guo X, Li Y, Hu Q, et al. Nobiletin ameliorates myocardial ischemia and reperfusion injury by attenuating endoplasmic reticulum stress-associated apoptosis through regulation of the PI3K/AKT signal pathway. Int Immunopharmacol. 2019;73:98–107.

    Article  CAS  PubMed  Google Scholar 

  67. Huang Q, Tian L, Zhang Y, Qiu Z, Lei S, Xia ZY. Nobiletin alleviates myocardial ischemia-reperfusion injury via ferroptosis in rats with type-2 diabetes mellitus. Biomed Pharmacother. 2023;163:114795.

    Article  CAS  PubMed  Google Scholar 

  68. Anand David AV, Arulmoli R, Parasuraman S. Overviews of Biological Importance of Quercetin: a bioactive flavonoid. Pharmacogn Rev. 2016;10(20):84–9.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Dong LY, Chen F, Xu M, Yao LP, Zhang YJ, Zhuang Y. Quercetin attenuates myocardial ischemia-reperfusion injury via downregulation of the HMGB1-TLR4-NF-κB signaling pathway. Am J Transl Res. 2018;10(5):1273–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Jin HB, Yang YB, Song YL, Zhang YC, Li YR. Protective roles of quercetin in acute myocardial ischemia and reperfusion injury in rats. Mol Biol Rep. 2012;39(12):11005–9.

    Article  CAS  PubMed  Google Scholar 

  71. Khan A, Iqubal A, Haque SE. Combinatorial delivery of Cinnamaldehyde and Quercetin ameliorates Isoproterenol-Induced Cardiac inflammation, apoptosis and myocardial infarction via modulation of NF-κB P65 and cleaved Caspase-3 signaling molecules in Wistar rats. Pharm Chem J. 2022;56:197–205.

    Article  CAS  Google Scholar 

  72. Deodato B, Altavilla D, Squadrito G, Campo GM, Arlotta M, Minutoli L, et al. Cardioprotection by the phytoestrogen genistein in experimental myocardial ischaemia-reperfusion injury. Br J Pharmacol. 1999;128(8):1683–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ji ES, Yue H, Wu YM, He RR. Effects of phytoestrogen genistein on myocardial ischemia/reperfusion injury and apoptosis in rabbits. Acta Pharmacol Sin. 2004;25(3):306–12.

    CAS  PubMed  Google Scholar 

  74. Gu M, Zheng AB, Jin J, Cui Y, Zhang N, Che ZP, et al. Cardioprotective Effects of Genistin in Rat Myocardial Ischemia-Reperfusion Injury Studies by Regulation of P2X7/NF-κB Pathway. Evid Based Complement Alternat Med. 2016;2016:5381290.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Liao PH, Hung LM, Chen YH, Kuan YH, Zhang FB, Lin RH, et al. Cardioprotective effects of luteolin during ischemia-reperfusion injury in rats. Circ J. 2011;75(2):443–50.

    Article  CAS  PubMed  Google Scholar 

  76. Sun D, Huang J, Zhang Z, Gao H, Li J, Shen M, et al. Luteolin limits infarct size and improves cardiac function after myocardium ischemia/reperfusion injury in diabetic rats. PLoS ONE. 2012;7(3):e33491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang X, Du Q, Yang Y, Wang J, Dou S, Liu C, et al. The protective effect of Luteolin on myocardial ischemia/reperfusion (I/R) injury through TLR4/NF-κB/NLRP3 inflammasome pathway. Biomed Pharmacother. 2017;91:1042–52.

    Article  CAS  PubMed  Google Scholar 

  78. Du S, Liu H, Lei T, Xie X, Wang H, He X, et al. Mangiferin: an effective therapeutic agent against several disorders (review). Mol Med Rep. 2018;18(6):4775–86.

    CAS  PubMed  Google Scholar 

  79. Wei B, Lin Q, Ji YG, Zhao YC, Ding LN, Zhou WJ, et al. Luteolin ameliorates rat myocardial ischaemia-reperfusion injury through activation of peroxiredoxin II. Br J Pharmacol. 2018;175(16):3315–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wan LL, Xia J, Ye D, Liu J, Chen J, Wang G. Effects of quercetin on gene and protein expression of NOX and NOS after myocardial ischemia and reperfusion in rabbit. Cardiovasc Ther. 2009;27(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  81. Wang Y, Zhang ZZ, Wu Y, Ke JJ, He XH, Wang YL. Quercetin postconditioning attenuates myocardial ischemia/reperfusion injury in rats through the PI3K/Akt pathway. Braz J Med Biol Res. 2013;46(10):861–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu H, Guo X, Chu Y, Lu S. Heart protective effects and mechanism of quercetin preconditioning on anti-myocardial ischemia reperfusion (IR) injuries in rats. Gene. 2014;545(1):149–55.

    Article  CAS  PubMed  Google Scholar 

  83. Liu X, Yu Z, Huang X, Gao Y, Wang X, Gu J, et al. Peroxisome proliferator-activated receptor γ (PPARγ) mediates the protective effect of quercetin against myocardial ischemia-reperfusion injury via suppressing the NF-κB pathway. Am J Transl Res. 2016;8(12):5169–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Tang J, Lu L, Liu Y, Ma J, Yang L, Li L, et al. Quercetin improve ischemia/reperfusion-induced cardiomyocyte apoptosis in vitro and in vivo study via SIRT1/PGC-1α signaling. J Cell Biochem. 2019;120(6):9747–57.

    Article  CAS  PubMed  Google Scholar 

  85. Yang JT, Wang J, Zhou XR, Xiao C, Lou YY, Tang LH, et al. Luteolin alleviates cardiac ischemia/reperfusion injury in the hypercholesterolemic rat via activating Akt/Nrf2 signaling. Naunyn Schmiedebergs Arch Pharmacol. 2018;391(7):719–28.

    Article  CAS  PubMed  Google Scholar 

  86. Xiao C, Xia ML, Wang J, Zhou XR, Lou YY, Tang LH, et al. Luteolin attenuates Cardiac Ischemia/Reperfusion Injury in Diabetic rats by modulating Nrf2 antioxidative function. Oxid Med Cell Longev. 2019;2019:2719252.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Testai L, Martelli A, Marino A, D’Antongiovanni V, Ciregia F, Giusti L, et al. The activation of mitochondrial BK potassium channels contributes to the protective effects of naringenin against myocardial ischemia/reperfusion injury. Biochem Pharmacol. 2013;85(11):1634–43.

    Article  CAS  PubMed  Google Scholar 

  88. Brookes PS, Digerness SB, Parks DA, Darley-Usmar V. Mitochondrial function in response to cardiac ischemia-reperfusion after oral treatment with quercetin. Free Radic Biol Med. 2002;32(11):1220–8.

    Article  CAS  PubMed  Google Scholar 

  89. Ikizler M, Erkasap N, Dernek S, Kural T, Kaygisiz Z. Dietary polyphenol quercetin protects rat hearts during reperfusion: enhanced antioxidant capacity with chronic treatment. Anadolu Kardiyol Derg. 2007;7(4):404–10.

    PubMed  Google Scholar 

  90. Bartekova M, Radosinska J, Pancza D, Barancik M, Ravingerova T. Cardioprotective effects of quercetin against ischemia-reperfusion injury are age-dependent. Physiol Res. 2016;65(Suppl 1):S101–7.

    Article  CAS  PubMed  Google Scholar 

  91. Liu Y, Song Y, Li S, Mo L. Cardioprotective effect of Quercetin against Ischemia/Reperfusion Injury is mediated through NO system and mitochondrial K-ATP channels. Cell J. 2021;23(2):184–90.

    PubMed  PubMed Central  Google Scholar 

  92. Qi L, Pan H, Li D, Fang F, Chen D, Sun H. Luteolin improves contractile function and attenuates apoptosis following ischemia-reperfusion in adult rat cardiomyocytes. Eur J Pharmacol. 2011;668(1–2):201–7.

    Article  CAS  PubMed  Google Scholar 

  93. Liu Z, Gao Z, Zeng L, Liang Z, Zheng D, Wu X. Nobiletin ameliorates cardiac impairment and alleviates cardiac remodeling after acute myocardial infarction in rats via JNK regulation. Pharmacol Res Perspect. 2021;9(2):e00728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All the authors of this manuscript are thankful to all the researchers whose work is included in this review article.

Funding

This review study did not receive any funding from any National or International Funding agencies nor any private organization.

Author information

Authors and Affiliations

Authors

Contributions

Vipin Kumar Verma: Conceptualization, writing, and reviewing. Priya Bhardwaj: Writing, reviewing and editing. Vaishali Prajapati: Review & editing. Avantika Bhatia: Data collection and reviewing. Sayani Purkait: Data collection and reviewing. Dharamvir Singh Arya: Reviewing, and supervision.

Corresponding author

Correspondence to Dharamvir Singh Arya.

Ethics declarations

Declarations of generative AI

No AI tool was used to generate data and preparation of the manuscript (including text, tables, figures etc.).

Competing interests

There is no conflict of interest between the authors and others for this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, V.K., Bhardwaj, P., Prajapati, V. et al. Flavonoids as therapeutics for myocardial ischemia-reperfusion injury: a comprehensive review on preclinical studies. Lab Anim Res 40, 32 (2024). https://doi.org/10.1186/s42826-024-00218-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s42826-024-00218-2

Keywords